ON THE EXISTENCE OF THE SOLUTION
FOR THE EQUATION
\[f_1g_1 + f_2g_2 + \cdots + f_ng_n = 1 \]

MINORU MATSUBARA

(Received October 30, 1976)

1. Introduction. Let \(X \) be a nonvoid set. We denote by \(BF(X) \) the set of all bounded functions from \(X \) to the complex field \(C \). If we define addition and multiplication to be the pointwise operations, \(BF(X) \) is a commutative algebra over \(C \). Let \(A \) be a subalgebra of \(BF(X) \) containing the constant function 1 which takes only the value 1 on \(X \). For \(f_1, f_2, \ldots, f_n \) in \(A \), let \(I(f_1, \ldots, f_n) \) be the ideal generated by \(f_1, \ldots, f_n \), i.e.,

\[I(f_1, \ldots, f_n) = \{ f_1g_1 + \cdots + f_ng_n \mid g_1, \ldots, g_n \in A \}. \]

In this paper, we discuss the following problem: if \(f_1, \ldots, f_n \) in \(A \), what conditions must be imposed for \(f_1, \ldots, f_n \) to be \(I(f_1, \ldots, f_n) = A \)? Evidently \(I(f_1, \ldots, f_n) = A \) is equivalent to the following condition:

(1) There exist \(g_1, \ldots, g_n \) in \(A \) such that \(f_1g_1 + \cdots + f_ng_n = 1 \).

Then putting \(\delta^{-1} = \max\{|g_1|, \ldots, |g_n|\} \) where \(|g_i| = \sup\{|g_i(x)| \mid x \in X\} \), the above condition (1) implies the following condition:

(2) There exists a constant \(\delta > 0 \) such that \(|f_1(x)| + \cdots + |f_n(x)| \geq \delta \) for any \(x \) in \(X \).

As is easily seen, the condition (2) generally does not imply the condition (1). In the section 3 of this paper, we prove a necessary and sufficient condition on which the condition (2) implies the condition (1) when \(A \) is a Banach function algebra on \(X \).

These settings are a generalization of a theorem stated in [2] (Theorem 1) and a proposition stated in [3] (Corollary 2). Finally, in the section 4, we give a characterization of the polynomial convexity (Theorem 3) and this is an answer for one of problems which were raised by J. Wermer in [4].

2. Basic facts. Let \(A \) be a commutative Banach algebra over the complex field \(C \) with unit \(e \). We denote by \(\mathcal{M}(A) \) the set of all non trivial homomorphisms from \(A \) into \(C \). For each \(f \) in \(A \), we define the Gelfand transform \(\hat{f} \) of \(f \), \(\hat{f} : \mathcal{M}(A) \to C \), by \(\hat{f}(\phi) = \phi(f) \) for \(\phi \) in \(\mathcal{M}(A) \).

We denote by \(\hat{A} \) the set of all Gelfand transforms of \(A \). We define the Gelfand topology on \(\mathcal{M}(A) \) to be the weak \(\hat{A} \) topology, i.e., the weakest topology on \(\mathcal{M}(A) \) for which all the functions \(\hat{f}(f \in A) \) are continuous. Thus a neighborhood base at \(\phi_0 \) in \(\mathcal{M}(A) \) consists of sets
of the form

\[U(\phi_0; g_1, \ldots, g_n, \varepsilon) = \{ \phi \in \mathcal{M}(A) \mid |\hat{\phi}_i(\phi) - \hat{\phi}_i(\phi_0)| < \varepsilon, \ i = 1, 2, \ldots, n \} \]

\[(g_1, \ldots, g_n \in A \text{ and } \varepsilon > 0) \]

The following is well known:

PROPOSITION 1. (Gelfand Representation Theorem)
(i) \(\mathcal{M}(A) \) is a nonvoid compact Hausdorff space.
(ii) \(\hat{A} \) is the subalgebra of \(C(\mathcal{M}(A)) \) (= the algebra over \(C \) of all complex valued continuous functions defined on \(\mathcal{M}(A) \) under the pointwise operations) and \(\hat{A} \) separates the points in \(\mathcal{M}(A) \), i.e., for every \(\phi_1, \phi_2 \in \mathcal{M}(A), \phi_1 \neq \phi_2 \), there exists \(f \in A \) such that \(\hat{f}(\phi_1) \neq \hat{f}(\phi_2) \).
(iii) The Gelfand map \(\hat{\cdot} : A \to \hat{A} \) is a homomorphism and norm decreasing, i.e.,

\[||\hat{f}||_\infty = \sup \{ ||\hat{f}(\phi)||_1 \mid \phi \in \mathcal{M}(A) \} \leq ||f|| \]

(= the norm of \(f \) in \(A \)) for \(f \) in \(A \).

PROPOSITION 2. (Alternative Theorem)
For any \(f_1, \ldots, f_n \) in \(A \), the following alternatives hold:
(i) There exists a \(\phi \) in \(\mathcal{M}(A) \) such that \(\hat{f}_1(\phi) = \cdots = \hat{f}_n(\phi) = 0 \).
(ii) There exist \(g_1, \ldots, g_n \) in \(A \) such that \(f_1 g_1 + \cdots + f_n g_n = e \).

Proof ([1]). Let \(I = I(f_1, \ldots, f_n) = \{ f_1 g_1 + \cdots + f_n g_n \mid g_1, \ldots, g_n \in A \} \), then the following alternatives hold:
(a) The ideal \(I \) is proper.
(b) The ideal \(I \) is not proper, i.e., \(I = A \).

In case of (a), the assertion (i) readily holds (by using Zorn's Lemma).

(Q.E.D.)

DEFINITION 1. Let \(X \) be a nonvoid topological space. We say that \(A \subset C(X) \) is a Banach function algebra on \(X \) if:
(i) \(A \) is a commutative Banach algebra (with a norm \(|| \cdot || \)) with unit 1.
(ii) \(A \) separates the points in \(X \).

Let \(A \) be a Banach function algebra on \(X \). Then \(X \) becomes necessarily a Hausdorff topological space. For each \(x \) in \(X \), if we define \(\tau(x) \) by \(\tau(x)f = f(x) \) for \(f \) in \(A \), then it is clear that \(\tau(x) \) is an element of \(\mathcal{M}(A) \) and the evaluation map \(\tau : X \to \mathcal{M}(A) \) is injective and continuous.

Each element \(f \) in \(A \) is bounded on \(X \), i.e., the following inequalities hold:
\[||f||_\infty \leq ||\hat{f}||_\infty \leq ||f|| \]
for \(f \) in \(A \),
because \(|f(x)| = |\hat{\tau}(x)| \leq ||\hat{f}||_\infty \leq ||f|| \) for \(x \) in \(X \) by Proposition 1.
DEFINITION 2. We say $A \subset C(X)$ is a uniform algebra on X if:
(i) X is a compact topological space.
(ii) A is a Banach function algebra with respect to the $|| \cdot ||_\infty$ (the uniform norm).

If A is a uniform algebra on X, then, because of X being compact and $\mathcal{M}(A)$ being Hausdorff, the evaluation map $\tau: X \to \tau(X) \subset \mathcal{M}(A)$ is a homeomorphism.

3. THEOREM 1. Let A be a Banach function algebra on X and $\tau: X \to \mathcal{M}(A)$ be the evaluation map. Then the following conditions are equivalent:
(i) Suppose that f_1, \cdots, f_m in A satisfy $|f_i(x)| + \cdots + |f_m(x)| \geq \delta$ for some fixed $\delta > 0$ and for all x in X. Then there exist g_1, \cdots, g_m in A such that $f_1g_1 + \cdots + f_mg_m = 1$.
(ii) $\tau(X)$ is dense in $\mathcal{M}(A)$.

Proof ([2]). (i) implies (ii). Suppose that there is a ϕ_0 in $\mathcal{M}(A)$ which is not in the closure of $\tau(X)$. Then there is a neighborhood $U(\phi_0; g_1, \cdots, g_m, \epsilon)$ of ϕ_0 which does not intersect $\tau(X)$. Therefore for any x in X, there is an integer $k(1 \leq k \leq m)$ such that $|\hat{g}_k(\tau(x)) - \hat{g}_k(\phi_0)| \geq \epsilon$.

We put $f_i = g_i - \hat{g}_i(\phi_0)$ for $i=1, \cdots, m$. Then f_i in A for $i=1, \cdots, m$ and because of $\hat{f}_i(\tau(x)) = \hat{g}_i(\tau(x)) - \hat{g}_i(\phi_0)$, we have

$$|f_1(x)| + \cdots + |f_m(x)| \geq \epsilon$$

for all x in X.

On the other hand, $\hat{f}_i(\phi_0) = 0$ for $i=1, \cdots, m$. Therefore, from Proposition 2, $I(f_1, \cdots, f_m) \neq A$.

(ii) implies (i). Suppose that f_1, \cdots, f_m in A satisfy $|f_1(x)| + \cdots + |f_m(x)| \geq \delta$ for some fixed $\delta > 0$ and for all x in X.

Let $\phi \in \mathcal{M}(A)$ and $0 < \epsilon < \delta/n$. As $\tau(X)$ is dense in $\mathcal{M}(A)$, there is an x in X such that $\tau(x) \in U(\phi; f_1, \cdots, f_m, \epsilon)$, i.e.,

$$|\hat{f}_i(\tau(x)) - \hat{f}_i(\phi)| = |f_i(x) - \hat{f}_i(\phi)| < \epsilon$$

for $i=1, \cdots, n$.

Then $|f_i(x)| < |\hat{f}_i(\phi)| + \epsilon < |\hat{f}_i(\phi)| + \delta/n$ for $i=1, \cdots, n$, and

$$|\hat{f}_i(\phi)| + \cdots + |\hat{f}_n(\phi)| + \delta > |f_i(x)| + \cdots + |f_m(x)| \geq \delta.$$

Therefore, $|\hat{f}_i(\phi)| + \cdots + |\hat{f}_n(\phi)| > 0$.

Thus, again using Proposition 2, we can conclude $I(f_1, \cdots, f_m) = A$.

(Q.E.D.)

COROLLARY 2. Let A be a Banach function algebra on a compact space X and $\tau: X \to \mathcal{M}(A)$ be the evaluation map. Then the following conditions are equivalent:
(i) Suppose that f_1, \cdots, f_m in A do not have common zeros in X.
Then there exist g_1, \cdots, g_m in A such that $f_1g_1 + \cdots + f_mg_m = 1$.
(ii) $\tau(X) = \mathcal{M}(A)$.
Proof. It is clear from Theorem 1 by applying the fact that a continuous map from a compact space to a Hausdorff space preserves closed set. (Q.E.D.)

4. Let C^n be the space of m-tuples of complex numbers, X be a compact set in C^n and $P(X)$ be the closure with respect to the uniform norm $\| \|_\infty$ in $C(X)$ of the polynomials in the coordinate functions. Then $P(X)$ is a uniform algebra on X.

Definition 3. Let X be a compact set in C^n. We define the polynomially convex hull of X, denoted $\text{hull}(X)$, by

$$\text{hull}(X) = \{ z \in C^n | \| p(z) \|_\infty \leq \| p \|_\infty \text{ for every polynomial } p \}.$$

X is said to be polynomially convex if $\text{hull}(X) = X$.

Theorem 3. Let X be a compact set in C^n. Then the following conditions are equivalent:

(i) Suppose that f_1, \ldots, f_m in $P(X)$ do not have common zeros in X. Then there exist g_1, \ldots, g_m in $P(X)$ such that $f_1g_1 + \cdots + f_ng_n = 1$.

(ii) X is polynomially convex.

Before we shall prove Theorem 3, we need the following:

Lemma 4. A compact set X in C^n is polynomially convex, if and only if $\tau(X) = \mathfrak{M}(P(X))$.

Proof. Suppose that $X = \text{hull}(X)$. Let φ be in $\mathfrak{M}(P(X))$, and put $\lambda = (\varphi(z_1), \ldots, \varphi(z_m))$ where z_1, \ldots, z_m are the coordinate functions. For any non-negative integers s_1, \ldots, s_m, we have $(z_1^{s_1}z_2^{s_2}\cdots z_m^{s_m})(\lambda) = \varphi(z_1^{s_1}z_2^{s_2}\cdots z_m^{s_m})$. Hence we have $p(\lambda) = \varphi(p)$ for every polynomial p, and $|p(\lambda)| \leq \| \varphi \|_\infty \| p \|_\infty = \| p \|_\infty$. Therefore λ is in $\text{hull}(X) = X$. By continuity, we have $\tau(\lambda)f = \varphi(f)$ for any f in $P(X)$, by which we can conclude that $\tau(\lambda) = \varphi$. Conversely, we suppose that $\tau(X) = \mathfrak{M}(P(X))$. By Definition 3, it is clear that $X \subset \text{hull}(X)$ and for any, but fixed λ in $\text{hull}(X)$, we have the following,

\[(\ast) \quad |p(\lambda)| \leq \| p \|_\infty \quad \text{for any polynomial } p.\]

So we define $\bar{\varphi}$ by $\bar{\varphi}(p) = p(\lambda)$ for any polynomial p. For f in $P(X)$, there are polynomials p_1, p_2, \ldots such that $p_n \to f$ uniformly on X. Then, using (\ast), we have

$$|p_j(\lambda) - p_k(\lambda)| \leq \| p_j - p_k \|_\infty \to 0 \quad (j, k \to \infty).$$

Therefore $\lim_{n \to \infty} p_n(\lambda)$ exists, and again using (\ast), we can prove that this limit is uniquely determined for f. Thus we can define $\varphi: P(X) \to C$, by $\varphi(f) = \lim_{n \to \infty} p_n(\lambda)$. It is clear that φ is in $\mathfrak{M}(P(X))$.

Therefore, by our assumption, we can conclude that there exists a λ_0 in X such that $\tau(\lambda_0) = \varphi$. For each coordinate function z_j, $j = 1, \ldots, m,$
we have \(\tau(\lambda_0)z_j = z_j(\lambda_0) = \varphi(z_j) = z_j(\lambda) \). Thus \(\lambda \) coincides with \(\lambda_0 \). Hence \(\lambda \) is in \(X \).

Proof of Theorem 3. Combine Corollary 2 with Lemma 4.

(Q.E.D.)

Bibliography