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Introduction

In 1999, Kauffman [8] introduced Virtual Knot Theory as a generaliza-

tion of Knot Theory. Virtual knots are considered to have many interesting

property different from classical knots which are usual knots in Knot Theory.

In Knot Theory, there are many kinds of studies about the relation between

knot invariants and local moves. We consider a local move on a knot dia-

gram. The distance between two knots by the local move is defined to be

the minimal number of times of the local move needed to transform one knot

into the other knot. If the other knot is the trivial knot, the distance by the

local move is called an unknotting number by the local move. In general, it

is difficult to determine exact values of distances and unknotting numbers.

The move called a crossing change is the most elementary unknotting oper-

ation in Knot Theory, and the unknotting number by crossing changes is a

classical knot invariant (see [9]). It is well known that unknotting numbers

for many classical knots by crossing changes can be determined from a knot
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signature (see [9]).

In Virtual Knot Theory, forbidden moves are an unknotting operation

(see [7, 10]). In the same way as knots, we may define the distance between

virtual knots by forbidden moves and the unknotting numbers of virtual knots

by forbidden moves. To find properties on the distance and the unknotting

number, we use the polynomial invariant pt, the smoothing invariant S and

the gluing invariant G by Henrich [5]. Invariants S and G are represented by

virtual knot diagrams, and they can induce concrete invariants. In particular,

the polynomial invariant pt is induced from S by using an invariant called

an intersection index of two components flat virtual links. In this thesis, we

give S(K)−S(K ′) and G(K)−G(K ′) for two virtual knots K and K ′ which

can be transformed into each other by a single forbidden move. Then we can

obtain the difference of the values obtained from invariants induced from S

and G between K and K ′. In particular, we have

pt(K)− pt(K
′) = (t− 1)(±tk ± tl),

where k and ℓ are some integers. By the result for pt(K), we can estimate

the distance between two virtual knots by forbidden moves, and the unknot-

ting number of a virtual knot by forbidden moves. Actually, we determine

unknotting numbers of 54 virtual knots out of 117 virtual knots with up to
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four real crossing points.

In Knot Theory, Vassiliev [13] defined a finite type invariant. A finite

type invariant is closely related to a local move called a Cn-move. We can

calculate the difference of the values of the finite type invariant of degree n

between two knots which can be transformed into each other by a Cn-move

(see [11] and [12]). In Virtual Knot Theory, Goussarov, Polyak and Viro

[3] defined a finite type invariant and a local move called an n-variation.

They showed the following two formulas generate the finite type invariants

of degree 2 for long virtual knots:

v2,1(·) =
⟨∑

ε1,ε2

ε1ε2 ε
1

ε
2

, ·
⟩
, v2,2(·) =

⟨∑
ε1,ε2

ε1ε2 ε
1

ε
2

, ·
⟩
,

and the following formula generates the finite type invariants of degree 3 for

virtual knots where εi = ±1 (i = 1, 2, 3):

v3,1(·) =
⟨ ∑

ε1,ε2,ε3

ε1ε2ε3

(
3

ε
1

ε
2

ε
3

−
ε
1

ε
3ε

2

+ ε
1 ε

2

ε
3

+ ε
1ε

2

ε
3

− ε1
ε
2
ε
3

− ε
1
ε
2

ε
3

)
−

＋ ＋
+

ー ー
, ·
⟩
.

We think that finite type invariants and n-variations have relationships in

Virtual Knot Theory. In this thesis, we give the differences of the values

of v2,1 and v2,2 between two long virtual knots which can be transformed

into each other by a 2-variation, and the difference of the values of v3,1
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between two virtual knots which can be transformed into each other by a

3-variation(3). By the results, we can obtain an estimate of the distance

between long virtual knots by 2-variations, and the distance between virtual

knots by 3-variation(3)’s. In addition, we consider the relation between an

n-variation and the polynomial invariant pt defined by Henrich [5]. Since

a forbidden move is a 2-variation (see [3]), we obtain the difference of the

values of pt between two virtual knots which can be transformed into each

other by a 2-variation as mentioned above. Moreover, we give the difference

of the values of pt between two virtual knots which can be transformed into

each other by an n-variation(n) (n ≥ 3).

This thesis is organized as follows. In Chapter 1, we review some basic

notions of Virtual Knot Theory. In Chapter 2, we obtain the difference of

the values of pt between two virtual knots which can be transformed into

each other by a forbidden move. Then, in Chapter 3, we give the differences

of the values of v2,1 and v2,2 between two long virtual knots which can be

transformed into each other by a 2-variation, and the difference of the values

of v3,1 between two virtual knots which can be transformed into each other

by a 3-variation(3).
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Chapter 1

Preliminaries

In this chapter, we introduce some definitions and notations.

1.1 Diagrams and equivalence classes

We introduce some diagrams on S2 and their equivalence classes. Here, all

diagrams are oriented. A virtual knot diagram is presented by a knot diagram

having virtual crossings as well as real crossings in Fig. 1.1.1. Two virtual

knot diagrams are equivalent if one can be obtained from the other by a finite

sequence of generalized Reidemeister moves in Fig. 1.1.3. The equivalence

class of virtual knot diagrams modulo the generalized Reidemeister moves

is called a virtual knot. A virtual string link diagram with µ strings and a

long virtual knot diagram have virtual crossings in the same way as a virtual

knot diagram. A virtual string link with µ strings and a long virtual knot are

defined as a virtual knot. In the other words, they are the equivalence classes
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of their diagrams under the generalized Reidemeister moves. A flat virtual

link diagram is a virtual link diagram without over and under information

for each real crossing. A flat virtual link is an equivalence class of flat virtual

link diagrams modulo the generalized Reidemeister moves without over and

under information. A flat singular virtual link diagram is a flat virtual link

diagram with singular crossings in Fig. 1.1.1. A flat singular virtual link is an

equivalence class of flat singular virtual link diagrams modulo flat versions

of the generalized Reidemeister moves and the flat singularity moves shown

in Fig. 1.1.2.

real virtual flat singular semi-virtual

Figure 1.1.1 Crossing types

(S2) (S3) (VS3)

Figure 1.1.2 Flat singularity moves

Virtual knots, virtual string links with µ strings, and long virtual knots

can be encoded by their Gauss diagrams. A virtual knot diagram, a virtual

string link diagram with µ strings, and a long virtual knot diagram can
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(Ⅰ) (Ⅱ) (Ⅲ)

(VⅠ) (VⅡ) (VⅢ)

(V ′Ⅲ)

Figure 1.1.3 Generalized Reidemeister moves

be regarded as the image of an immersion from S1 into R2, that from unit

intervals Ik (k = 1, 2, . . ., µ) into R2, and that from R into R2, respectively.

Let D be one of these diagrams. The Gauss diagram for D is the preimage

of D with chords connecting the preimages of each real crossing. We specify

the real crossing information on each chord by directing the chord toward

the under crossing and decorating each chord with the sign of the crossing

(Fig. 1.1.4).

sign(d)= + 1

  d   d

sign(d)= - 1

Figure 1.1.4 The sign of a real crossing

It is well known that there exists a bijection from all virtual knots to all

equivalence classes of their Gauss diagrams under the generalized Reidemeis-

ter moves in Fig. 1.1.5. Then we can identify a virtual knot with it’s Gauss
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diagram. The same results hold for a virtual string link, and a long virtual

knot.

ε ε

ε

-ε

ε

-ε

ε
ε
ε

ε
ε
ε

Figure 1.1.5 Generalized Reidemeister moves of Gauss diagrams

1.2 Local moves

Both of the moves on a virtual knot diagram depicted in Fig. 1.2.1 are called

forbidden moves, and denoted by F . Forbidden moves are presented by local

moves of Gauss diagrams in Fig. 1.2.2.

F t
F 
h

Figure 1.2.1 Forbidden moves

Kanenobu and Nelson showed Theorem 1.2.1 independently.
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ε´ ε

ε´ ε

ε´

ε´

ε

ε

F t
F 
h

Figure 1.2.2 Forbidden moves of Gauss diagrams

Theorem 1.2.1 ([7], [10]). Any virtual knot diagram can be deformed into

any other virtual knot diagram by using forbidden moves and generalized

Reidemeister moves.

By Theorem 1.2.1, we can define the distance between any two virtual

knots by using forbidden moves.

Definition 1.2.2. Let K and K ′ be virtual knots, and D and D′ virtual

knot diagrams of K and K ′ respectively. If a virtual knot diagram D can

be transformed into D′ by a set of generalized Reidemeister moves and local

moves denoted by M , we denote the minimal number of times of M needed

to transform D into D′ by dM(K,K ′) and call it the distance between K and

K ′ by M . In particular, if D′ is the trivial knot diagram, it is denoted by

uM(K) and called the unknotting number of K by M .

We note that the unknotting number uM(K) is a virtual knot invariant

of K.
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Chapter 2

Unknotting numbers by
forbidden moves

2.1 Forbidden moves and Henrich’s invariants

We recall the definition of invariants S(K), G(K) and pt(K) for a virtual

knot K by Henrich [5].

Definition 2.1.1 ([5]). Let D be a diagram of K, and C(D) the set of all

real crossings of D. Denote by Dd
g the flat singular virtual link diagram which

is obtained from D by changing a real crossing d ∈ C(D) for a singular cross-

ing and ignoring over and under information for the other real crossings. Let

[Dd
g ] be the flat singular equivalence class of Dd

g , and [D0
g ] the flat singular

equivalence class of the flat singular virtual knot with one singular crossing

obtained by applying a generalized Reidemeister move (I) to D and exchang-

ing the crossing for a singular crossing. The gluing invariant G(K) is given
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by

G(K) =
∑

d∈C(D)

sign(d)
(
[Dd

g ]− [D0
g ]
)
,

where sign(d) is the sign of d as in Fig. 1.1.4.

Furthermore, denote by Dd
s the flat virtual link diagram which is obtained

from a virtual link diagram smoothed at d by ignoring over and under infor-

mation for the other real crossings. Let [Dd
s ] be the flat equivalence class of

Dd
s , and [D0

s ] the flat equivalence class of the disjoint union of a flat diagram

of D and a trivial knot. The smoothing invariant S(K) is given by

S(K) =
∑

d∈C(D)

sign(d)
(
[Dd

s ]− [D0
s ]
)
.

Invariants pt(K) is defined in analogy with S(K). Let Dd
s = D1 ∪ D2,

and 1 ∩ 2 the set of all flat crossings between D1 and D2. For a flat crossing

e ∈ 1 ∩ 2, sgn(e) is the sign of e as in Fig. 2.1.1. The intersection index of

Dd
s , i(D

d
s), is defined by

i(Dd
s) =

∑
e∈1∩2

sgn(e).

Since the value of i(Dd
s) is depend on d, i(Dd

s) can be also denoted by i(d).

Then the polynomial invariant pt(K) is given by

pt(K) =
∑

d∈C(D)

sign(d)
(
t|i(d)| − 1

)
.
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sgn(e)= + 1

  e   e

sgn(e)= - 1

D
1

D
2

D
2

D
1

Figure 2.1.1 The sign of a flat crossing

Remark 2.1.2. Let ZL denote the free abelian group generated by a set L of

all 2-component flat virtual links. Define a map ϕ : L → Z[t] to be the map

such that ϕ(L) = t|i(L)| for any 2-component flat virtual link L. Extend it to

ZL linearly. Then pt = ϕ◦S. In this way, S(K) and G(K) induce invariants

for K by using invariants of 2-component flat virtual links and 2-component

flat singular virtual links respectively.

d
1

d
1
′

d
2
′

d
2

d
1

d
1
′

d
2
′

d
2

D D′ D D′

Figure 2.1.2

From here, we consider forbidden moves and invariants for virtual knots.

LetK andK ′ be virtual knots represented by diagramsD andD′ respectively

as shown in Fig. 2.1.2. The diagram D is obtained from D′ by a single

forbidden move. Let di (i = 1, 2, . . . , n) be the real crossings of K and
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d′i (i = 1, 2, . . . , n) the real crossings of K ′ corresponding to di. By the

definition,

S(K)− S(K ′) =
n∑

j=1

sign(dj)
{
([Ddj

s ]− [D
′d′j
s ])− ([D0

s ]− [D′0
s ])
}
, (2.1.1)

G(K)−G(K ′) =
n∑

j=1

sign(dj)
{
([Ddj

g ]− [D
′d′j
g ])− ([D0

g ]− [D′0
g ])
}
. (2.1.2)

Theorem 2.1.3. For pt(K), we have

pt(K)− pt(K
′) =


(t− 1)

(
±t|i(d1)| ± t|i(d2)|

)
(t− 1)

(
±t|i(d1)| ± t|i(d2)|−1

)
(t− 1)

(
±t|i(d1)|−1 ± t|i(d2)|

)
(t− 1)

(
±t|i(d1)|−1 ± t|i(d2)|−1

) . (2.1.3)

Proof. Due to (2.1.1) and Remark 2.1.2,

pt(K)− pt(K
′) =

n∑
j=1

sign(dj)
(
t|i(dj)| − t|i(d

′
j)|
)
.

We consider the terms of pt(K)−pt(K
′) corresponding to dk and d′k (3 ≤

k ≤ n). Denote by d̃ the flat crossing corresponding to a real crossing d. Ddk
s

and D′d′k
s are identical except for d1, d2, d

′
1 and d′2. Since sgn(d̃1) = sgn(d̃′1)

and sgn(d̃2) = sgn(d̃′2), |i(dk)| = |i(d′k)|. Therefore, sign(dk)(t|i(dk)|−t|i(d
′
k)|) =

0.

Now, we consider the terms of pt(K) − pt(K
′) corresponding to dℓ and

d′ℓ (ℓ = 1, 2). Figure 2.1.3 illustrates all cases of Ddℓ
s and D

′d′ℓ
s . If the string 3

belongs to the same component as the string 1, d̃m does not contribute |i(dℓ)|
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and d̃′m contributes |i(d′ℓ)| (ℓ ̸= m and m = 1, 2). On the other hand, if the

string 3 belongs to the same component as the string 2, d̃m contributes |i(dℓ)|

and d̃′m does not contribute |i(d′ℓ)|. Thus |i(dℓ)| = |i(d′ℓ)| ± 1. Therefore,

sign(d1)
(
t|i(d1)| − t|i(d

′
1)|
)
+ sign(d2)

(
t|i(d2)| − t|i(d

′
2)|
)

= ±t|i(d1)|
(
1− t±1

)
± t|i(d2)|

(
1− t±1

)
=


(t− 1)

(
±t|i(d1)| ± t|i(d2)|

)
(t− 1)

(
±t|i(d1)| ± t|i(d2)|−1

)
(t− 1)

(
±t|i(d1)|−1 ± t|i(d2)|

)
(t− 1)

(
±t|i(d1)|−1 ± t|i(d2)|−1

) .

1

D
S

d
1 D′

S

d
1
′

D
S

d
2 D′

S

d
2
′

D
S

d
1 D′

S

d
1
′

D
S

d
2 D′

S

d
2
′

23
1

23

1

2

3 1

2

3

1

2

3
1

2

3 1
2

3

1
2

3

Figure 2.1.3

Corollary 2.1.4. Let K and K ′ be virtual knots, and pt(K) − pt(K
′) =

(t− 1)
∑

j≥0 ajt
j. Then,

dF (K,K ′) ≥
∑

j≥0 |aj|
2

.
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In particular, let pt(K) = (t − 1)
∑

k≥0 bkt
k for a virtual knot K. Then we

have

uF (K) ≥
∑

k≥0 |bk|
2

.

2.2 Examples

Let D be a virtual knot diagram. An n-bridge presentation of D is a division

of D into n overbridges (paths without under crossings) and n underbridges

(paths without over crossings) appearing alternately along the diagram. The

bridge number b(K) of a virtual knotK is the minimal number of overbridges

of all bridges presentations of the diagrams representing K ([1], [6]).

Example 2.2.1. For a, b ∈ N, let K be virtual knot represented by the

diagram D as shown in Fig. 2.2.1. Since D
cj
s (1 ≤ j ≤ a) and Dck

s (a + 1 ≤

k ≤ a + b) are flat virtual links as shown in Fig. 2.2.2, |i(cj)| = b and

|i(ck)| = a. Then we have

pt (K) =a(tb − 1) + b(ta − 1)

=(t− 1){a(tb−1 + tb−2 + · · ·+ 1) + b(ta−1 + ta−2 + · · ·+ 1)}.

From Corollary 2.1.4, uF (K) ≥ ab.
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The virtual knot K is presented by the Gauss diagram G in Fig. 2.2.3.

We perform forbidden moves on the leftmost vertical chord in G b times,

and obtain the diagram G′ as in Fig. 2.2.3. The diagram G′ has a − 1

vertical chords and b horizontal chords. By repeated use of this move a

times, G may be changed to a Gauss diagram with b horizontal chords.

These chords are removed via generalized Reidemeister moves (I) for Gauss

diagrams. Therefore uF (K) = ab.

From the above arguments, we see that there is a virtual knot K such

that uF (K) = n and b(K) = 1 for any n ∈ N.

Example 2.2.2. Table 3.3.1 shows all virtual knots with up to 4 real crossing

points. We can determine unknotting numbers of 54 virtual knots as in

Tab. 2.2.1.

...

...

c
1
              c

a-1
  c

a

 c
a+1

  c
a+2

           c
a+b

D

Figure 2.2.1
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         c

a+b
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}

}a

b

}

}a-1

b

Figure 2.2.3
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K uF (K) K uF (K)
0.1 0 4.37 3
2.1 1 4.38 1
3.1 1 4.39 1
3.2 1 4.40 1
3.3 2 4.42 1
3.4 1 4.43 2
4.1 2 4.45 2
4.3 2 4.48 3
4.4 1 4.49 1
4.5 1 4.50 1
4.7 2 4.52 1
4.11 2 4.53 2
4.15 2 4.54 1
4.17 1 4.57 1
4.18 1 4.60 1
4.20 1 4.63 2
4.21 2 4.64 1
4.22 1 4.73 2
4.23 1 4.74 1
4.25 2 4.79 1
4.28 2 4.80 3
4.29 2 4.81 2
4.32 1 4.82 3
4.33 1 4.83 2
4.34 1 4.88 1
4.35 1 4.89 4
4.36 2 4.93 2

Table 2.2.1 Unknotting numbers
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Chapter 3

2- and 3-variations and finite
type invariants of degree 2 and
3

3.1 n-variations and finite type invariants

We recall the finite type invariant based on the study by Goussarov, Polyak

and Viro. Virtual knot diagrams (or long virtual knot diagrams) are extended

to diagrams with semi-virtual crossings in Fig. 1.1.1. Semi-virtual crossings

are related to the other crossings by the following relation in a free abelian

group Z[K] generated by the set K of all virtual knots (or long virtual knots):

= − .

Let D be a virtual knot diagram (or a long virtual knot diagram), and

(d1, d2, . . ., dn) an n-tuple of real crossings of D. For an n-tuple δ = (δ1, δ2,

. . ., δn) of 0 and 1, define Dδ to be the diagram obtained from D by switching
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the crossing di with δi = 1 to a virtual crossing. Denote by |δ| the number of

1 in δ. The following sum is called a diagram with n semi-virtual crossings

and denoted by Dn: ∑
δ

(−1)|δ|Dδ.

Definition 3.1.1 ([3]). Put v : K → G to be an invariant of virtual knots

with values in an abelian group G. Extend it to Z[K] linearly. Then the

invariant v is called a finite type invariant of degree n, if the equality v(Km) =

0 holds for all diagrams Km with m semi-virtual crossings (m > n).

An arrow diagram is just a Gauss diagram with all chords drawn dashed.

Let A be the set of all arrow diagrams, and G the set of all Gauss diagrams.

A subdiagram of G ∈ G is a Gauss diagram consisting of some subset of the

chords of G. Define a map i : G → A by the map which makes all the chords

of a Gauss diagram dashed, and I : G → ZA by

I (G) =
∑
G′⊂G

i(G′),

where the sum is over all subdiagrams of G. Extend these to ZG linearly.

On the generators of ZA, define (G,H) to be 1 if G = H and 0 otherwise,

and then extend (·, ·) bilinearly. Put

⟨A,G⟩ = (A, I (G)) ,

20



for any G ∈ G and A ∈ ZA. Then, the following results hold for the finite

type invariant of low degree.

Proposition 3.1.2 ([3]). Denote by vn a Z-valued finite type invariant of

degree n. The invariant v1 is a constant map. If K is the set of all virtual

knots, then there is not v2. On the other hand, if K is the set of all long

virtual knots, then v2 is generated by

v2,1(·) =
⟨∑

ε1,ε2

ε1ε2 ε
1

ε
2

, ·
⟩

and v2,2(·) =
⟨∑

ε1,ε2

ε1ε2 ε
1

ε
2

, ·
⟩
.

And, if K is the set of all virtual knots, then v3 is generated by

v3,1(·) =
⟨ ∑

ε1,ε2,ε3

ε1ε2ε3

(
3

ε
1

ε
2

ε
3

−
ε
1

ε
3ε

2

+ ε
1 ε

2

ε
3

+ ε
1ε

2

ε
3

− ε1
ε
2
ε
3

− ε
1
ε
2

ε
3

)
−

＋ ＋
+

ー ー
, ·
⟩
,

where εi = ±1 (i = 1, 2, 3).

An n-variation is defined by the similar way for a Cn-move.

Definition 3.1.3 ([3]). Let G be a Gauss diagram of a virtual string link

with µ strings, and A1, A2, . . ., An+1 be the non-empty sets of chords of G.

Then the Gauss diagram G is called n-trivial, if the following conditions are

satisfied:

(i) Ai ∩ Aj = ∅ (i ̸= j) and
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(ii) we can change G into the Gauss diagram with no chords by applying

generalized Reidemeister moves (II) of Gauss diagrams, if we remove

from G all chords which belong to any non-empty subfamily of {A1,

A2, . . ., An+1}.

Let G′ be a Gauss diagram of a virtual knot. Choose µ segments which

do not contain an endpoint of any chord on the circle of G′, and attach µ

strings of G on these segments. This move is called an n+ 1-variation.

Forbidden moves are 2-variations (see [3]). From the above definition, an

example of an n-variation is given as follows.

Example 3.1.4. The move depicted in Fig. 3.1.1 is an n-variation. It is

called an n-variation(n) and denoted by (n).

n+1 n+1

(n=1) (n　2)

...

...

≧

Figure 3.1.1 An n-variation(n)
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Two local moves M1 and M2 are equivalent, if Mi can be realized by a

single Mj (i, j = 1, 2 and i ̸= j). The moves in Fig. 3.1.1 are equivalent to

those in Fig. 3.1.2.

... ...

n+1 n+1

(n=1) (n　2)≧

Figure 3.1.2 Moves equivalent to the moves in Fig. 3.1.1

3.2 2- and 3-variations and finite type invari-

ants of degree 2 and 3

As described in Chapter1, Section1.2, forbidden moves are presented by local

moves of Gauss diagrams in Fig. 1.2.2.

Lemma 3.2.1. Any oriented forbidden move is realized by the moves in

Fig. 3.2.1.

+ +

+ +

+

+

+

+

Figure 3.2.1
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Proof. We give orientations to strings of Ft as in Fig. 3.2.2. The case of

ε, ε′ = +1 realizes the other cases as shown in Fig. 3.2.3.

Similarly, we can show that any oriented Fh is realized by the right move

in Fig. 3.2.1.

ε´ ε

ε´ε

Figure 3.2.2

−

−

+

+

+

+

−

−

−

−

−

−

−
+

+

−

−

+
+

−

+
−

+
−

+

−

+

−

−
−

+

−
−
+

−
−

+

−
−

+

Figure 3.2.3

Theorem 3.2.2. Let G and G′ be Gauss diagrams of long virtual knots K
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and K ′ which can be transformed into each other by a single forbidden move

respectively. Then we have

(
v2,1(K)− v2,1(K

′), v2,2(K)− v2,2(K
′)
)
= (0, 0), (0, ± 1) or (±1, 0).

Proof. We consider the moves in Fig. 3.2.1 for Gauss diagrams of long virtual

knots. It is enough to check the moves in Fig. 3.2.4. Let G and G′ be Gauss

diagrams which can be transformed into each other by a single move in

Fig. 3.2.4. Let ℓ1 and ℓ2 be the two chords in the part where a forbidden

move is applied. Since the subdiagrams of G with either ℓ1 or ℓ2 and those

with neither ℓ1 nor ℓ2 are equal to the subdiagrams of G′ with either ℓ1 or ℓ2

and those with neither ℓ1 nor ℓ2 respectively, these terms cancel each other

in I(G)− I(G′). The following are the terms in I(G)− I(G′) corresponding

to subdiagrams which consist of two chords and have both ℓ1 and ℓ2:

±
+ +

∓
+ +

in (i) or (vi),

±
++
∓

++
in (ii) or (v),

±
++

∓
++

in (iii),

±
+ +

∓
+ +

in (iv).
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Therefore,

v2,1(K)− v2,1(K
′)

=

(∑
ε1,ε2

ε1ε2 ε
1

ε
2

, I(G)− I(G′)

)

=



(∑
ε1,ε2

ε1ε2 ε
1

ε
2

,±
+ +

∓
+ +

)
in (i) or (vi),(∑

ε1,ε2

ε1ε2 ε
1

ε
2

,±
++
∓

++

)
in (ii) or (v),(∑

ε1,ε2

ε1ε2 ε
1

ε
2

,±
++

∓
++

)
in (iii),(∑

ε1,ε2

ε1ε2 ε
1

ε
2

,±
+ +

∓
+ +

)
in (iv)

=


0 in (i) or (vi),
0 in (ii) or (v),
0 in (iii),
±1 in (iv).

Similarly,

v2,2(K)− v2,2(K
′) =


0 in (i) or (vi),
0 in (ii) or (v),
±1 in (iii),
0 in (iv).

Corollary 3.2.3. Let K and K ′ be long virtual knots. Then,

dF (K,K ′) ≥
∣∣v2,1(K)− v2,1(K

′)
∣∣+ ∣∣v2,2(K)− v2,2(K

′)
∣∣.
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++ ++

++ ++ + + + +

++ ++ + + ++

++ + +

(ⅰ) (ⅱ)

(ⅲ) (ⅳ)

(ⅴ) (ⅵ)

Figure 3.2.4 Gauss diagrams G and G′

Example 3.2.4. Let Kn be the long virtual knot represented by the Gauss

diagram Gn as shown in Fig. 3.2.5. We perform a forbidden move on the

rightmost two chords in Gn, and then these two chords are removed. By

repeated use of this move n times, the Gauss diagram Gn may be changed

to the Gauss diagram without chords.

Moreover, the subdiagram of Gn with non-split two chords is only

+ +
. The Gauss diagram Gn has n subdiagrams corresponding to

+ +
. Then we have

v2,1(Kn) =
∑
ε1,ε2

ε1ε2

(
ε
1

ε
2

, I(Gn)

)
=

(
+ +

, n
+ +

)
= n.
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Therefore uF (Kn) = n.

...

n

...
+ + + + + +

K
n

G
n

n

Figure 3.2.5

We prepare some notations for Lemma 3.2.5. Choose distinct points a, b,

c, and d on the circle of a Gauss diagram of a virtual knot. When we walk

on the circle along the orientation from a to b, we denote the arc that we

trace by ab. Define N+
ab,cd as the number of positive chords with tails in ab

and heads in cd, and N−
ab,cd as the number of negative chords with tails in ab

and heads in cd. Put Nab,cd = N+
ab,cd −N−

ab,cd.

Lemma 3.2.5. The Gauss diagrams Gεε′
1 and Gεε′

3 are transformed into Gεε′
2
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and Gεε′
4 by a single forbidden move respectively, and points a, b, c and d are

end points of arrows as shown in Fig. 3.2.6. Then we have

v3,1(G
εε′

1 )− v3,1(G
εε′

2 )

=


−Nab,bc +Nbc,ab +Nbc,cd −Ncd,bc − 1 (ε, ε′ = +1),
Nab,bc −Nbc,ab −Nbc,cd +Ncd,bc (ε ̸= ε′),
−Nab,bc +Nbc,ab +Nbc,cd −Ncd,bc + 1 (ε, ε′ = −1).

v3,1(G
εε′

3 )− v3,1(G
εε′

4 )

=


Nab,bc −Nbc,ab −Nbc,cd +Ncd,bc − 1 (ε, ε′ = +1),
−Nab,bc +Nbc,ab +Nbc,cd −Ncd,bc (ε ̸= ε′),
Nab,bc −Nbc,ab −Nbc,cd +Ncd,bc + 1 (ε, ε′ = −1).

ε

ε′

ε

ε′

ε

ε′

ε

ε′

a
b

c

d

ab

c

d

a
b

c

d

ab

c

d

G
1

εε′ G
2

εε′ G
3

εε′ G
4

εε′

(ε, ε′=+1 or -1)

Figure 3.2.6

Proof. We consider the Gauss diagrams G++
1 and G++

2 . Let ℓ1 and ℓ2 be the

two chords in the part where a forbidden move is applied. In a similar way

as Theorem 3.2.2, we check the terms corresponding to subdiagrams which

consist of up to three chords and have both ℓ1 and ℓ2 in I(G++
1 ) − I(G++

2 ).

These terms are the following:
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(
N+

ab,bc

+
+
+ +N+

bc,cd

+
+

+ +N+
cd,ab

+
+

+

+N+
bc,ab

+

+

+ +N+
cd,bc

+
+
+

+N+
ab,cd

+
+

+

+N−
ab,bc

−
+
+ +N−

bc,cd

+
+

− +N−
cd,ab

+
+

−

+N−
bc,ab

−

+

+

+N−
cd,bc

+
+
−
+N−

ab,cd
+
+

−

+
＋
＋

)
−(

N+
ab,bc

+
+
+ +N+

bc,cd

+
+

+ +N+
cd,ab

+
+

+

+N+
bc,ab

+

+

+ +N+
cd,bc

+
+
+

+N+
ab,cd

+
+

+

+N−
ab,bc

−
+
+ +N−

bc,cd

+
+

− +N−
cd,ab

+
+

−

+N−
bc,ab

−

+

+

+N−
cd,bc

+
+
−
+N−

ab,cd
+
+

−

+ ＋
＋

)
.

Therefore we have

v3,1(G
++
1 )− v3,1(G

++
2 )

=

( ∑
ε1,ε2,ε3

ε1ε2ε3

(
3

ε
1

ε
2

ε
3

−
ε
1

ε
3ε

2

+ ε
1 ε

2

ε
3

+ ε
1ε

2

ε
3

− ε1
ε
2
ε
3

− ε
1
ε
2

ε
3

)
−

＋ ＋
+

ー ー
,
(
N+

ab,bc

+
+
+ +N+

bc,cd

+
+

+ +N+
cd,ab

+
+

+

+N+
bc,ab

+

+

+

+N+
cd,bc

+
+
+
+N+

ab,cd
+
+

+

+N−
ab,bc

−
+
+ +N−

bc,cd

+
+

− +N−
cd,ab

+
+

−

+N−
bc,ab

−

+

+ +N−
cd,bc

+
+
−
+N−

ab,cd
+
+

−

+
＋
＋

)
−(

N+
ab,bc

+
+
+ +N+

bc,cd

+
+

+ +N+
cd,ab

+
+

+

+N+
bc,ab

+

+

+ +N+
cd,bc

+
+
+

+N+
ab,cd

+
+

+

+N−
ab,bc

−
+
+ +N−

bc,cd

+
+

− +N−
cd,ab

+
+

−

+N−
bc,ab

−

+

+

+N−
cd,bc

+
+
−
+N−

ab,cd
+
+

−

+ ＋
＋

))
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=− (N+
ab,bc −N−

ab,bc −N+
cd,ab +N−

cd,ab) + (N+
bc,cd −N−

bc,cd)− (N+
cd,ab −N−

cd,ab

+N+
ab,cd −N−

ab,cd) + (N+
bc,ab −N−

bc,ab)− (N+
cd,bc −N−

cd,bc −N+
ab,cd +N−

ab,cd)

− 1

=−Nab,bc +Nbc,ab +Nbc,cd −Ncd,bc − 1

The other cases are similarly shown.

Theorem 3.2.6. There exists a pair of virtual knots K and K ′ which satisfies

the following for any natural number n:

(i) v3,1(K)− v3,1(K
′) = n and

(ii) If Gauss diagrams G and G′ are those of K and K ′ respectively, G and

G′ can be transformed into each other by a single forbidden move.

Proof. Let Kn be the virtual knot represented by the Gauss diagram Gn as

shown in Fig. 3.2.7. The Gauss diagrams Gn and Gn−1 can be transformed

into each other by a single forbidden move. By Lemma 3.2.5, v3,1(Gn) −

v3,1(Gn−1) = n. Therefore, Kn and Kn−1 satisfy the conditions (i) and (ii).
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… n+1

K G

n+1

−

＋＋＋＋

{

{
…

n n

Figure 3.2.7

Theorem 3.2.7. Let G and G′ be Gauss diagrams of long virtual knots K

and K ′ which can be transformed into each other by a single 3-variation(3)

respectively. Then we have

v3,1(K)− v3,1(K
′) = ±1.

Proof. Let K and K ′ be virtual knots represented by the Gauss diagrams G

and G′ respectively as shown in Fig. 3.2.8 and Fig. 3.2.9. Gauss diagrams G

and G′ are transformed into each other by forbidden moves via Gf and G′
f as

in Fig. 3.2.9. We consider orientations and connecting relations of strings of

G and G′. For orientations, it is enough to consider the cases in Fig. 3.2.10,

and the connecting relations in the case (I) are six cases in Fig. 3.2.11. We

only show the case (I)(i) in Fig. 3.2.12 since the other cases can be treated
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similarly. If ε = +1, then

v3,1(G) =v3,1(Gf )−Nab,bc +Nbc,ab +Nbc,cd −Ncd,bc − 1,

v3,1(G
′) =v3,1(G

′
f )− (Nab,bc + 1) +Nbc,ab +Nbc,cd −Ncd,bc − 1.

Since the Gauss diagramsGf andG′
f are equivalent, v3,1(G)−v3,1(G

′) = 1.

Similarly, if ε = −1, v3,1(G)− v3,1(G
′) = −1

K K′

(3)

Figure 3.2.8 Virtual knots K and K ′

F

G
f

G′
f

ε
1

ε
1

ε
2

-ε
2

ε
2

-ε
2

ε
3

-ε
3

G G′

ε
1

ε
1

ε
2

-ε
2

ε
2

-ε
2-ε

3

F

ε
3

Figure 3.2.9 Gauss diagrams G, G′, Gf and G′
f
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G G′ G G′

(Ⅰ) (Ⅱ)

(Ⅲ) (Ⅳ)

(Ⅴ) (Ⅵ)

(Ⅶ) (Ⅷ)

＋

ー

＋

ー

＋

ー

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ー

Figure 3.2.10 Oriented Gauss diagrams G and G′

Corollary 3.2.8. Let K and K ′ be virtual knots. Then,

d(3)(K,K ′) ≥
∣∣v3,1(K)− v3,1(K

′)
∣∣.

Example 3.2.9. The virtual knots Kn and K ′
n in Fig. 3.2.13 are represented

by the Gauss diagrams G0
n and Gn

n in Fig. 3.2.14 respectively. The Gauss
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G G′

ε
＋

ε
＋

＋

ー

ε＋ ε＋

＋

ε
＋

＋
ε

＋

ε＋ ε＋

ー
ε
＋

ε

＋

ー

G G′

(ⅰ) (ⅱ) (ⅲ)

(ⅳ) (ⅴ) (ⅵ)

G G′

ε
＋

ε
＋

Figure 3.2.11 Connecting relations of strings

ε

＋

ε

＋
＋

c

d

a

b

G G′

Figure 3.2.12 Labeled G and G′

diagram Gn
n is obtained from G0

n by applying 3-variation(3)’s n times, as in

Fig. 3.2.14. By Theorem 3.2.7,

v3,1(G
i
n)− v3,1(G

i+1
n ) = 1 (i = 0, 1, . . . , n− 1).

Thus, v3,1(G
0
n)−v3,1(G

n
n) = n. Form Corollary 3.2.8, we have d(3)(Kn, K

′
n) =

n.
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K
n

K′
n

n n

Figure 3.2.13

G
n

G
n

2 n

1

1
G
n

2 G
n

...
ー ＋

 . . .

 . . . ー

＋

ー

＋

ー

＋

ー ＋ー ＋

ー
＋
＋

ー
＋
＋

ー＋＋

0 n
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ー
＋
＋

ー
＋
＋

ー
＋
＋

ー
＋
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ー
＋
＋

ー
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＋

ー＋＋ ー＋＋

Figure 3.2.14
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3.3 An n-variation(n) and Henrich’s polyno-

mial invariant

Theorem 3.3.1. Let D and D′ be virtual knot diagrams of virtual knots K

and K ′ which can be transformed into each other by a single n-variation(n)

(n ≥ 3). Then we have

pt(K)− pt(K
′) = (t− 1)(±tk ± tl) (n = 3) and

pt(K)− pt(K
′) = 0 (n ≥ 4)

where k and ℓ are some integers.

Proof. We show the case n = 3. Virtual knots K and K ′ have diagrams D

and D′ in Fig. 3.3.1. Let c be a real crossing of D except c1, c2, c3 and c4,

and c′ the crossing of D′ corresponding to c. Denote by d̃ the flat crossing

corresponding to a real crossing d.

D D′

(3)
c
3 c

4

c
1 c

2

c
5

c
3
′

c
4
′

c
5
′

Figure 3.3.1 Virtual knot diagrams D and D′
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First, consider the terms of pt(K) and pt(K
′) corresponding to c and c′

respectively. Comparing i(c) with i(c′), i(c) = i(c′) or i(c′)+sgn(c̃1)+sgn(c̃2).

Since sgn(c̃1) + sgn(c̃2) = 0, |i(c)| = |i(c′)|. Therefore, sign(c)(t|i(c)| − 1) =

sign(c′)(t|i(c
′)| − 1). Then, consider the terms of pt(K) corresponding to c1

and c2. Figure 3.3.2 indicates all cases of orientations for the 3rd and the 4th

strings of D, and Fig. 3.3.3 shows Dc1 and Dc2 in the case (I) in Fig. 3.3.2.

We only show the case (I) since the other cases can be treated similarly.

Comparing i(c1) with i(c2), i(c1) + sgn(c̃1) = i(c2) + sgn(c̃2) + εsgn(c̃3) +

εsgn(c̃4) (ε = ±1). Here, sgn(c̃3) + sgn(c̃4) = 0 and sgn(c̃1) = sgn(c̃2) as

shown in Fig. 3.3.3. Thus, |i(c1)| = |i(c2)|. Since sign(c1) = −sign(c2),

sign(c1)(t
|i(c1)| − 1) + sign(c2)(t

|i(c2)| − 1) = 0.

(Ⅰ) (Ⅱ) (Ⅲ) (Ⅳ)

4      3     2       1

c
1 c

2

4      3     2       1

c
1 c

2

4      3     2       1

c
1 c

2

4      3     2       1

c
1 c

2

Figure 3.3.2 Orientations of 3rd and 4th strings for D and D′

Finally, consider the terms of pt(K) and pt(K
′) corresponding to c3, c4,

c′3, and c′4. We may consider the four cases for orientations of the 2nd and the

3rd strings of D and D′. Just as above, we only show the case in Fig. 3.3.4.
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D
c
1 D

c
2

c
2

c
1

c
3 c

4

c
5

c
3

c
4

c
5

Figure 3.3.3 Flat virtual links Dc1 and Dc2

Figure 3.3.5 shows Dc3 , Dc′3 , Dc4 and Dc′4 in this case. If the string ℓ1 belongs

to the same component as the string ℓ3 in Dc3 and Dc4 , the flat crossing c̃5

does not contribute i(c3) and the flat crossing c̃5 contributes i(c4) since the

strings ℓ1 and ℓ2 belong to different components each other. Similarly, if

the string ℓ1 belongs to the different component from the string ℓ3, the flat

crossing c̃5 contributes i(c3) and the flat crossing c̃5 does not contribute i(c4).

Thus, comparing i(c3) with i(c4), i(c3)+ sgn(c̃3) = i(c4)+ sgn(c̃4)+ εsgn(c̃5).

Since sgn(c̃3) = sgn(c̃4), |i(c3)| = |i(c4) ± 1|. Similarly, |i(c′3)| = |i(c′4) ± 1|.

Since the strings ℓ1 and ℓ2 belong to different components in Dc3 and D′c′3 ,

the flat crossing c̃1 contributes i(c3) if and only if the flat crossing c̃2 does

not contribute i(c3). Comparing i(c3) with i(c′3), i(c3) = i(c′3) + sgn(c̃1) or

i(c′3) + sgn(c̃2). Thus, |i(c3)| = |i(c′3)± 1|. Therefore we have
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{
sign(c3)(t

|i(c3)| − 1) + sign(c4)(t
|i(c4)| − 1)

}
−
{
sign(c′3)(t

|i(c′3)| − 1) + sign(c′4)(t
|i(c′4)| − 1)

}
=sign(c3)t

|i(c3)|(1− t±1)− sign(c′3)t
|i(c′3)|(1− t±1)

=− t|i(c3)|(1− t±1) + t|i(c3)|±1(1− t±1)

=



(t− 1)(t|i(c3)| − t|i(c3)|±1),
(t− 1)(−t|i(c3)|−1 − t|i(c3)|±1),
(t− 1)(t|i(c3)| + t|i(c3)|),
(t− 1)(t|i(c3)| + t|i(c3)|−2),
(t− 1)(−t|i(c3)|−1 + t|i(c3)|),
(t− 1)(−t|i(c3)|−1 + t|i(c3)|−2).

Thus, we obtain pt(K)− pt(K
′) = (t− 1)(±tk ± tl).

4      3     2       1

c
3 c

4

4      3     2       1

c
3
′

c
4
′

Figure 3.3.4

We show the case n ≥ 4 as shown in Fig. 3.3.6. We may prove just by

the same way as the case n = 3 except i(c3), i(c4), i(c
′
3) and i(c′4). Compar-

ing i(c3) with i(c4), i(c3) + sgn(c̃3) = i(c4) + sgn(c̃4) + εsgn(c̃5) + εsgn(c̃6).

Since sgn(c̃5) + sgn(c̃6) = 0, |i(c3)| = |i(c4)|. Since sign(c3) = −sign(c4),

sign(c3)(t
|i(c3)| − 1)+ sign(c4)(t

|i(c4)| − 1) = 0. Similarly, sign(c′3)(t
|i(c′3)| − 1)+
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Figure 3.3.5 Flat virtual links Dc3 , Dc4 , D′c′3 and D′c′4

sign(c′4)(t
|i(c′4)| − 1) = 0. Therefore, pt(K)− pt(K

′) = 0.

D′D

c
1 c

2

c
3 c

4

...
c
3
′

c
4

′

...

c
5 c

6

c
5
′

c
6
′

Figure 3.3.6 Virtual knot diagram D and D′

Corollary 3.3.2. Let K and K ′ be virtual knots, and pt(K) − pt(K
′) =

(t− 1)
∑

j≥0 ajt
j. Then,

d(3)(K,K ′) ≥
∑

j≥0 |aj|
2

.

Example 3.3.3. For n ∈ N, let Kn be a virtual knot represented by the

diagram Dn as shown in Fig. 3.3.7. If n is even, flat virtual links Dci
n (i =

1, 2, . . . , n) are shadows of the virtual Hopf link, and Dcn+1
n is a shadow of
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the trivial link. Since |i(ci)| = 1 and |i(cn+1)| = 0, pt(Kn) = n(t−1). On the

other hand, if n is odd, both of Dci
n and Dcn+1

n are shadows of the virtual Hopf

link. Since |i(ci)| = |i(cn+1)| = 1, pt(Kn) = (n+1)(t− 1). Since
∑

j≥0 |aj| is

non-zero, Kn cannot be transformed into the trivial knot by n-variation(n)’s

(n ≥ 4). Therefore an n-variation(n) (n ≥ 4) is not an unknotting operation.

D
n

...

c
1
 c
2
         c

n

c
n+1

Figure 3.3.7
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Virtual knots with up to 3 crossings

0.1 2.1 3.1 3.2 3.3 3.4 3.5 3.6 3.7
Virtual knots 4 crossings

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9

4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18

4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27

4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.36

4.37 4.38 4.39 4.40 4.41 4.42 4.43 4.44 4.45

4.46 4.47 4.48 4.49 4.50 4.51 4.52 4.53 4.54

4.55 4.56 4.57 4.58 4.59 4.60 4.61 4.62 4.63

4.64 4.65 4.66 4.67 4.68 4.69 4.70 4.71 4.72

4.73 4.74 4.75 4.76 4.77 4.78 4.79 4.80 4.81

4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89 4.90

4.91 4.92 4.93 4.94 4.95 4.96 4.97 4.98 4.99

4.100 4.101 4.102 4.103 4.104 4.105 4.106 4.107 4.108

Table 3.3.1 Virtual knot table [4]
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