Doctoral Dissertation

STUDIES ON ACCURATE AND
EFFICIENT SOLUTIONS OF
ILL-CONDITIONED LINEAR SYSTEMS

 BY PRECONDITIONING METHODS

BUALER % R L 7 AR — KA D
R DRI 72 SR B

November 30, 2017

YUKA KOBAYASHI

Graduate School of Science

Tokyo Woman’s Christian University

Abstract

In this paper, we develop an accurate and efficient algorithm for solving ill-conditioned
linear systems. For this purpose, we propose two preconditioning methods that are
based on LU factorization. One is the method using the inverse of an LU factor. The
other is the method using the residual of an LU factorization. The latter method re-
quires less computational cost than the former one. Using an LU factorization with the
iterative refinement, we can accurately solve a linear system Az = b for k(A) Sut,
where u is the relative rounding error unit in working precision. If we use the proposed
algorithm with accurate dot product, we can obtain an accurate approximate solution
for ill-conditioned linear systems beyond the limit of the working precision. Results of
numerical experiments show that the proposed algorithm can work for k(A) Su~?in
reasonable computing time. Moreover, we aim to accelerate the precbnditioning method
from a practical point of view. For this purpose, we apply a more efficient method of
accurate matrix multiplication based on BLAS in the preconditioning method. We
demonstrate excellent performance of the BLAS-based preconditioning method by nu-

merical experiments.

Contents

1 Introduction 1
2 Basics 4
2.1 Norm. e e e 4
2.1.1 Vector Norm e 4

2.1.2 Matrix Norm 5

2.2 Floating-point Arithmetic, 6
2.3 LU factorization« . o i i 7
231 Crout’sMethod 8

2.3.2 Doolittle’s Methodo 8

3 Proposed Algorithm : 10
31 Stepl e e 12
3.2 SteDP 2 . .. e 12
3.3 Preconditioning Methods (Step 3&4) 13
331 Method A e 14

332 MethodB e 15

4 Numerical Experiments 22
4.1 Test Matrices i i it e e 23

4.2 Numerical Results

..............................

5 Acceleration of the Method A

5.1 BLAS-based Method

5.2 Numerical Results

6 Conclusion

..............................

il

............................

32
32
33

38

Chapter 1

Introduction

We present an accurate and efficient algorithm for solving an ill-conditioned linear
system

Az =b, AeR™™, beR" (1.1)
by using floating-point arithmetic. The relative rounding error unit of floating-point
arithmetic is denoted by u. We assume IEEE standard 754 binary64 (double precision)
to be working precision. Then, u = 275 ~ 10716,

Let x(A) be the condition number of A such that
r(A) = Al - 1147,

where |- | denotes the spectral norm. If x(A) is too large to solve (1.1), A is considered
as ill-conditioned. If that is the case, then a numerical solution Z of (1.1) tends to be
_inaccurate. Such ill-conditioned (or ill-posed) problems often arise in inverse problems

(cf. e.g.[1]). In this paper, we deal with ill-conditioned problems such as
k(A) < (u™h)? = 10%.

There are two standard methods to solve (1.1) accurately. One is the method using

an LU factorization with the iterative refinement method. If x(A) is not too large,

1

| the method is effective. Otherwise the method cannot work well. The other is an LU
factorization using multiple-precision arithmetic. The method can work even if k(A) is
ill-conditioned. However, it takes significant computing time in spite of the magnitude
of k(A). To remedy these defects of the standard methods, we introduce preconditioning
techniques using a result of an LU factorization by floating-point arithmetic.

In about 1984, Rump [2] presented an interesting algorithm obtaining approximate
inverses of ill-conditioned matrices. The basis of this algorithm are the multiplicative
corrections of an approximate inverses using accurate dot product. Rump [3] also
showed an algorithm for solving ill-conditioned linear systems using his a.lgofithm for
the accurate matrix inversion. Let R denote an approximate inverse of A. If we use R

as a preconditioner for A, (1.1) can be transformed into
RAz = Rb. (1.2)
Then the condition number of RA can be reduced by u such as
. k(RA) = 1 + ux(A).

Consequently, (1.2) becomes more well-conditioned than (1.1).
Ogita [4] showed that an approximate inverse of an LU factor of A can be used
instead of the approximate inverse of A. Assume A = LU with x(A) = k(L). If we use

L~! as a left preconditioner, the linear system (1.1) can be transformed into

LAz =L7"'. (1.3)
" Then the condition number of L~} can be reduced by u such as
k(LA) = 1+ uk(A).

For the purpose of this paper, we adopt the method in [4] and introduce two pre-
conditioning methods. One is the method using explicitly obtained L. The other is

2

the method using a residual of an LU factorization without calculating L' in (1.3).
The latter requires less computational cost than the former.

This paper is organized as follows: Chapter 2 is about basics of this paper. In
Chapter 3, we present an algorithm for solving ill-conditioned linear systems. Moreover,
we discuss two preconditioning methods and their computational cost. Chapter 4 shows
results of numerical experiments by using the proposed methods. After that, in Chapter
5, we introduce an algorithm for accurate matrix multiplication based on BLAS. We
demonstrate excellent performance of the proposed method using BLAS-based method

by numerical experiments. Finally, we conclude the paper in Chapter 6.

Chapter 2

Basics

2.1 Norm

2.1.1 Vector Norm

If a real-valued function f : R®™ — R satisfies the following properties for a vector

z € R", f(z) is called a vector norm.

Axiom 1 (cf. [5]).

fizx)>0 zeR*, (f(z)=0 < z=0)

fz+y) < fl@)+ fy) z,yeR”
flaz) =|a|f(z) aeR, z€R™

We denote such a function with a double bar notation: f(z) = ||z||.

4

The three most useful norms in numerical computation are

lzll, = leil,
lzlle = (Z |3)1/2 (z x)1/2 and

i=1

|zlleo = mex |-

2.1.2 Matrix Norm
If a real-valued function f : R™™ — R satisfies the following properties for a matrix
A € R™%" f(A) is called a matrix norm.

Axiom 2 (cf. [5]).

F(A)>0 AeR™" (f(A)=0 <= A=0)
f(A+B) < f(A)+ f(B) A,BeR™™"
f(aA) = |o|f(4) aeR, AcR™™

We denote such a function with o double bar notation: f(A) = ||A|l.

The most basic matrix norm is

Azl

A
1]l = max "

Moreover, the following holds:

| All, = max Z |1,

1<j<n

| Allc = max Z‘aul and

1<i<m

Al = \/p(ATA) = Omax(A),

5

where the spectral radius of B € R™" is defined as
p(B) = max{|)| : det(B — AI) = 0},

and Omax(A) denotes the largest singular value of A.

2.2 Floating-point Arithmetic

A floating-point number expresses an approximation of a real number on a computer.

A set of floating-point numbers F C R consists of real numbers in the form
y=+mx " (2.1)
The four integer parameters in (2.1) mean
e the base 3,
e the precision £,
e the exponent range emin < € < €max, and
e the mantissam, 0 <m < Bt —1..

A floating-point number y € F is generally expressed such that

d d d
y=+p° (ﬁl+ﬁ_§++§i) =18° x .dydy...dy,

where the digit d; satisfles 0 < d; < B —1(i=1,2,...,n) and d; #0.
For z € R, fl(z) denotes a floating-point number nearest to z. Then, z can be

approximated by a floating-point number with a relative error w. Here, u is the relative

rounding error unit of floating-point arithmetic.

6

Theorem 1 (cf. [6]). If z € R lies in the mﬁge of F, then
fliz)=z(1+9), |8 <wu
Moreover, the following version is also useful.

Theorem 2 (cf. [6]). If z € R lies in the range of F, then

z
fU=) = sa+oy

The accuracy of the basic arithmetic operations is assumed such that, for z,y € F,

18] < u.

flzopy)=(zopy)(1+6), 8|<u, ope{+,—x/} (22

Moreover, (2.2) also holds for the square root operation /.

2.3 LU factorization:

Let A = [a;] € R™" be a nonsingular matrix. Under some condition, A can be
expressed as the product of the lower triangular matrix L and the upper triangular

matrix U as follows.

i#0, u;#0, 1<i<n.
-“Here, L and U are nonsingular. Such decomposition is an LU factorization. Following

is a theorem on the LU factorization.

Theorem 3 (cf. [5]). A € R™" has an LU factorization if det(A(l : k,1 : k)) #
0 for 1 <k <n-—1. If A is nonsingular and the LU factorization of A ezists with

l; =1, 1<1i<n, then the LU factorization is unique and det(A) = w11 - - Unn-

7

2.3.1 Crout’s Method

By the Crout’s method, U becomes a unit upper triangular matrix. The algorithm is

as follow.

Algorithm 1 The Crout’s method

Require:
uii=1 (1:=1,"',7'l)
Lj=0 (i<j)

u; =0 (i>7)
1: fork=1:n—-1do

2: fori=k:ndo

w

L, = aix
4: end for

5: forj=k+1:ndo

Qi
6: Ukj = =
kK

T: end for

8: fori=k+1:ndo

9: forj=k+1:ndo
10: Qij = Q5 — Lixugs
11: end for

12: end for

13: end for

2.3.2 Doolittle’s Method

By the Doolittle’s method, L becomes a unit lower triangular matrix. The algorithm

is as follow.

Algorithm 2 The Doolittle’s method

Require:
li=1 (i=1,---,n)
Lj=0 (i<j)

w =0 (4> 7)
1: fork=1:n—1do
2 forj=k+1:ndo

3: Ugj = Qkj

4: end for

5: fori=k:ndo

6: lig = ik

Qkk

T end for

8: fori=k+1:ndo
0 forj=k+1:ndo
10: Qij = Qij — bikUkj
11: end for

12: end for

13: end for. i

Chapter 3

Proposed Algorithm

Let M € R™™ denote a left preconditioner of A. Then (1.1) is transformed into
MAz = Mb,

where it is expected that
k(MA) < k(A).

We can choose some nonsingular matrix as M, for example, an approximate inverse of
A, an LU factor or a QR factor. In this paper, we adopt the LU factor in terms of
computational cost.

Let us consider the LU fa.ctorization' of A with partial pivoting such that PA = LU.
By Doolittle’s method, L becomes a unit lower triangular matrix. Then we know that

the condition number of A becomes
k(A) ~ min {x(U),u™"}

by heuristics (cf. e.g. [5, p.-130]). Then U~ can work as a right preconditioner such
that
k(AU = 1+ uk(A).

10

Namely, the condition number of A can be reduced by a factor around u down to 1
using U.

At present, LAPACK routines are well-optimized for today’s computers. These
routines are very fast. LAPACK adopts the Doolittle’s LU factorization method. To
benefit from such LAPACK routines, we execute an LU factorization of AT to obtain
a left preconditioning for A.

We present an algorithm using preconditioning techniques.

Algorithm 3 The proposed algorithm using preconditioning techniques for accurate

solutions of linear systems.
Part 1 : The standard method solving Az = b

Step 1. Execute an LU factorization of AT with partial pivoting by the Doolittle’s
method. Then solve Az = b by forward and backward substitutions for

obtaining its approximate solution.

Step 2. Apply the iterative refinement method (cf. e.g. [5, pp.126-127]) to the ap-
proximate solution obtained at Step 1. If the stopping criterion for the
iterations is satisfied, then the algorithm successfully stops. Otherwise, go
to Part 2.

Part 2 : Preconditioning techniquerfof reducing x(A)

Step 3. Precondition A to reduce the condition number of A as C := L71A, where
L is the LU factor obtained at Step 1. Then, solve Cz = d where d := L™'b.

Step 4. Apply the iterative refinement method to the approximate solution.

In order to avoid extra computational cost, we intend to execute Part 2 only if A is

ill-conditioned.

11

In the following, we explain the details of Part 1 of the algorithm. Assume that
Doolittle’s method for AT is used for a left preconditioning of A. We can also apply a

similar way when using Crout’s method for A.

3.1 Step 1
To solve the linear system Az = b, we execute a Doolittle’s LU factorization of AT with
partial pivoting:
PAT = LU.
After that, we solve
UTLT Pz = b,
and obtain
g~ PTL7TUb
3.2 Step 2

By repeating the following steps starting from k = 0 and 7z .= Z, an accurate solution

of Az = b can be obtained if A is not ill-conditioned. First, we calculate the residual
o) 5 b — 470 (3.1)

precisely by accurate computing. In this paper, we use the algorithm Dot2 in [7], which
can calculate accurate dot product as if computed in quadruple precision. Next, we

solve

Ay = r®) (3.2)

12

by using the LU factors obtained at Step 1. Let 7{¥) be an approximate solution of
(3.2), then we update Z(¥) by

Fl+1) = 50 4 58,

The more these steps repeat, the more accuracy of Z gains up to the limit of computa-

tional precision. The iterations stop by any one of the following three reasons:
(S) Let € denote a tolerance. If

iz — 28| < z*Y| for all 4, (3.3)

then this algorithm successfully stops.

(F1) Let o be some constant with 0 < o < 1. If
15®1 = g2 (3.4)

is satisfied, then we also go to Part 2. We recommend o = 0.1. Even if (3.4)
is satised with o > 0.1, we guess Z*) cannot be improved any more due to the

ill-conditionedness of A.

(F2) Let Kmax be the maximum number of iterations. If the number of iterations

reaches kpax, then we go to Part 2.

If (F1) or (F2) is fulfilled in Step 2, this algorithm is fails and we cannot get an accurate

" “solution.

3.3 Preconditioning Methods (Step 3 & 4)

In this section, we concretely explain Part 2 of the proposed algorithm.

13

3.3.1 Method A

We calculate Xz =~ U-T explicitly, and use X as a left preconditioner of A. After
that, we solve Xy Az = Xpb. Here, the matrix product X - A should be calculated
accurately. Then it becomes possible to obtain an accurate numerical solution of Az = b

with reducing the condition number of A.

Step 3

We try to reduce the condition number of A by using a preconditioning technique. For

this purpose, we adopt a result of an LU factorization of AT in Step 1 such as
X, ~UT. (3.5)

Then we multiply Az = b by X, from the left. Let C and d denote an approximation
of X1 A and X b, respectively:

C= XLA and d= XLb (36)

Here, XA and X b should be calculated accurately. To do this, we adopt the algorithm

Dot2 in [7]. We now consider the linear system
Czx=d. (3.7)

We expect C to be not ill-conditioned. If that is the case, (3.7) can be solved using a
standard way with an LU factorization and forward and backward substitutions.
Table 3.1 shows computational cost of Method A using Dot2. Total computational
cost of Method A is %§n3 flops (floating-point operations). It costs 21.25 times as much
as computing time of an LU factorization. Moreover, if the Fused Multiply-Add (FMA)
instruction is available, we can reduce the computational cost for Dot2. By using FMA

for Dot2, the total computational cost of Method A becomes -239n3 flops.

14

Table 3.1: Computational cost (flops) of Method A and ratio to LU

Operations requiring @(n®) flops | With Dot2 | Dot2 (FMA)
LU factorization of AT 2n? 2p3
Xp:=UT | n® nd
C:=X,A Bl 5n3

LU factorization of C 2p3 2p3
Total cost Bnd Bn?
Ratio to LU 21.25 10

Step 4

This step is almost the same as Step 2 except
r® =~ Xy, (b— AZ®). (3.8)

Note that (3.8) should be calculated by forward substitution using accurate computation

based on Dot2.

3.3.2 Method B

In this method, we solve
UTAz=U"Tb (3.9)

without explicitly calculating X =~ U-T. Instead, we calculate U~T A implicitly using
a residual of an LU factorization. Here, the residual PAT — LU and U —T} should be

15

calculated accurately. Using this method, the condition number of A can be reduced,

similar to Method A.

Step 3
We define a residual of the LU factorization of AT such that
R:=PAT - LU. (3.10)
Let E € R™*" denote a.n error of an LU factorization satisfying
PAT = (L + E)U.
Then E is represented by a residual of an LU factorization such that
E=(PAT —LU)U™'=RU™™ (3.11)

In general, E is not a lower triangular matrix. Now, we calculate R in (3.10) accurately
by Dot2 and obtain its approximation R. Moreover we calculate B = RU-1in (3.11)

by forward substitution in working precision. Therefore
UTA~ (L+E)TP,
and (3.9) is transformed into
(L + E) Pz =U"Tb. (3.12)

We calculate
Cw~(L+E)T

in working precision and

d=U"Tb (3.13)

16

Table 3.2: Computational cost (flops) of Method B and ratio to LU

Operations requiring O(n®) flops | With Dot2 | Dot2 (FMA)
LU factorization of AT 2n3 2n8
R~ PAT - LU Bnl Pnd
E~ RU™1 nd n?

LU factorization of C = (L + E)T 2n? 2n3
Total cost 82p3 Ips
Ratio to LU 16 8.5

by forward substitution using accurate computation based on Dot2. After that, we

solve

CPCL‘ =d (314)

using an LU factorization of C with partial pivoting:
PQC ~ Lz Uz.

After that, we solve

LQUQPIE = Pzd

and obtain

=~ PTU;'L;' Pyd.

Table 3.2 shows computational cost of Method B using Dot2. Total computational

cost of Method B is S—fn:* flops. It costs 16 times as much as the time of an LU

17

factorization. The computational cost of Method B is %ne’ flops less than that of Method
A. If FMA is available, the total computational cost of Method B becomes ¥n* flops
by using FMA for Dot2.

Error Bound of C
We explain why C'P in (3.14) becomes a good approximation of U —TA. We assume
K(A) >u™t. (3.15)
Let Ac denote an error of C such that
C=UTAPT + Ac.

We consider to estimate ||A¢||. First, we define Az, As and Ag as rounding errors

such that
C = (L+E+4ar)T,
E = ﬁU—l + Ag,
R = PAT—LU+Ar.
Then
CT = L+ (RU+As)+Ar
= L+ (PAT-LU+AR) U +As+Ar
= PATU '+ ApU'+ As+ Ar
and
Ag = ARU_1 + Ag+ Ar.
Therefore,

lAcl < 1ARUTH + 1 As] + 1Al (3.16)

18

We can obtain upper bounds of |AgU~!||, |As|| and ||Ar|| as follows. In spite of

k(A), the following relations usually hold in practice:

Al = AT~ WZIT, (3.17)
14l < ull, (3.18)
k(U) =~ min{s(4),u""}, (3.19)
|PAT — LU|| =~ u|lAl, (3.20)
1L = n. (3.21)

From (3.15) and (3.19),
w(U) = UIIU | = u™

First, we consider an upper bound of ||AgU™!||. Since we use Dot2 to calculate

R:= PAT - LU,
| ARl = ul| PAT — LU|| + cou?|| PIAT| + | LUl (co = n)-

Here, according to [7], co & n? in the sense of error bound. However, in fact an actual
g

error often becomes @(n). Therefore co ~ n is more practical. Then (3.17) and (3.19)

yield
ARl =~ w?[|All + cou?|| Al
~ aul||Al|l (a=n), (3.22)
and
, u-!
IARUH| < AN - U7}~ cru?[|A]l - [l S au. (3.23)

Next, we consider an upper bound of ||Agl||. From (3.20) and (3.22),

Rl < |IPAT — LU|| + || A&l
< ul|A].

~y

19

Since Ag is a rounding error of RU-lin working precision, (3.18) yields

u-l

Ul

cu (c2=n). (3.24)

18sl S caull RINIU | = cou- ullA]l -

IN N

Finally, we consider an upper bound of ||Ar||. Since Ar is a rounding error of L +E
in working precision,
A7) < w(IL]l +).
Here, using (3.24) we have

-1

ol Drr— 3 _ U
IEl < NRUM +lAsl < IR - UM + [1Asl S wllAll - o o
< L (3.25)
From this and (3.21),
|Ar|| S csu (3 =m). (3.26)
Inserting (3.23), (3.24) and (3.26) into (3.16), we have
lAc]l S (aa+c2+es)u
~ nu. (3.27)

Moreover, from (3.21), (3.25) and (3.26),

lcl = LI+l + Az

~ n.

Therefore, it turns out that Ac is small enough to approximate U-TAPT by C.

Step 4
This step is almost the same way as Step 2 and Section 3.3.1 except
r® = U~T (b— AZ®). (3.28)

20

Note that (3.28) should be calculated by forward substitution using accurate computa-

tion based on Dot2.

21

Chapter 4

Numerical Experiments

We apply the proposed algorithm using Methods A and B in Section 3 to some test
matrices, and measure computing time and maximum relative errors of obtained ap-
proximate solutions. Computing environment is shown in Table 4.1. Theoretical peak
performance of the laptop PC is 32 GFLOPS (floating-point operations per sec x1079).
We apply the LAPACK routine DTRTRI for (3.5) by using MATLAB’s MEX function,
which enables us to call the functions written in C on MATLAB. Moreover, we execute
Dot2 using C with parallel computations by OpenMP and MEX function for (3.6),
(3.8), (3.10), (3.13) and (3.28). We set ¢ = 10~° and kmax = 16 at Steps 2 and 4 of the
algorithm for the iterative refinement method.

For cémpa.rison of the computational speed, we also solve Az = b on MATLAB
with Advanpix Multiprecision Computing Toolbox version 3.8.5.9059 (8], which utilizes
* well-known, fast, and reliable multiple-precision arithmetic libraries using GMP [9] and
MPFR [10]. In particular, the toolbox is very fast in the case where the number of
computational digits d is set as d = 34. Then, it is compliant with IEEE 754 binary128
(quadruple precision) arithmetic, and we adopt this setting.

The exact solution is denoted by z* = A~'b. In this paper, we define the maximum

22

Table 4.1: Computing Environment (laptop PC)

CPU Intel Core i7 2 GHz 2 Cores
Memory 8GB
Software MATLAB R2013b
Compiler gee version 4.4.7
IEEE 754 binary64 (u = 2758 =~ 10716)
Theoretical peak performance 32 GFLOPS
relative error as

We check whether Ga ~ XA in Method A and Cg ~ (L + E)T in Method B are
actually good approximations or not. Now, Cp = XA and Cp = U-T A are calculated
by MPFR. We confirm these relative errors Ex and Ep as follows:

ICa — Call
E, = WA = waAll
AT TGl
ICs — Csll
B = 1B — ¥BIL
SRR ToA|

4.1 Test Matrices

We generate random matrices with specified matrix size and condition numbers. If

the specified condition number is less than 106, we use randsvd from Higham’s test

matrices [6]:
A := gallery(’randsvd’,n,cnd,3,n,n,1) .

23

Here n is the order of the matrix A and cnd is an expected condition number of A.
Besides, if the condition number is greater than 10, it is difficult to generate such
ill-conditioned matrices using randsvd. Then we use Rump’s algorithm randmat [11]
to generate ill-conditioned matrices. Since the function randmat costs significant com-
puting time to generate large size matrices such as n > 1000, we modify the way as
“follows.

First, we generate a small ill-conditioned matrix Ay, € R™*™ for m < n using
randmat:

A;; := randmat (m,cnd) .

Now, we set m = 100 for n > m. Second, we generate a random matrix Age €

RM®-m)x(n—m) ysing the MATLAB function:
Aso :=randn(n-m) .

Next, we set A’ € R®*™ with A;; and Ajp such as

A 0] }m)

0 Az

Finally, for a random permutation matrix P,
A:=PAPT,

Here, P is chosen by using randperm function in MATLAB.

For right-hand side vectors, set b as

b:= A * ones(n,1) .

24

Table 4.2: Maximum Relative Error (laptop PC), n = 2000

cnd A\b Method A | Method B| MPg_34 Ep Eg

108 | 1.7-107% | 2.2.10716 | 2.2.10716 | 2.2.1071 | 2.3.10717 | 2.3- 107"
10 | 7.3.10%2 | 1.3.10"12 | 1.3-10712 | 2.2.107%6 | 2.3-107%7 | 3.5-107"
10% | 8.1-107°! | 1.5-10"1 | 1.8.10-15 | 2.2-10716 | 2.2- 107" | 2.8-107*°
10% | 1.6.10+92 | 2.2.10716 | 2.2.10-16 | 1.1- 101! | 8.6-107%8 | 5.1- 107
10% | 6.9-10+92 | 9.6-10"15 | 3.7-10-4 | 1.6-107% | 1.0-107'7 | 6.5-107"°
10% | 2,610+ | 7.1-10*% | 8.5-10"°2 | 1.8-107% | 2.6-107*7 | 2.0- 107"

4.2 Numerical Results

First, we display the maximum relative error for n = 2000 in Table 4.2. The item
‘end’ is a specified condition number of A (k(A) =~ cnd). The item ‘A\b’ is to solve
Az = b by the standard MATLAB command in working precision. The item ‘MP’ is
to solve Az = b with the Multiprecision Computing Toolbox with d = 34 (compliant
with IEEE 754 binary128). From the results, it is confirmed that we cannot get an
accurate approximate solution by A\b if A is ill-conditioned. In case of using binary128
arithmetic (MP with d = 34) without-the iterative refinement, we cannot obtain an
accurate approximate solution for x(A) > 10%. Using the proposed algorithm (Methods
A and B) with Dot2, we can obtain an accurate approximate solution until k(A) ~ 10%.

Next, we display computing time for n = 2000 in Table 4.3. The meanings of the

items in the tables are shown below.

e cnd: Specified condition number of A (k(A) ~ cnd)

e LU: Computing time for an LU factorization of AT in binary64 arithmetic

25

Table 4.3: Computing time(sec) and Ratio (laptop PC), n = 2000

Method A Method B MPg_34
cnd | LU | Teota | k1 Riv | Teota | k1 | k2 | Rou | Twe
108 [0.22 | 0.27 | 2 1.23 | 0.27 | 2 - 1.23 78.78
10% | 0.23 | 0.35 | 6 1.52 | 0.35 | 6s) - 1.52 | 78.86

106 [0.25 | 13.44 | 1(py) | l(s) | 93.76 13.30 | L(ry
1024 | 0.22 | 13.06 | 1(ry) | 2(s) | 59-36 | 13.36 | 1(ry)
10%0 | 0.21 | 13.12 | 2(ry) | 4(s) | 62-48 | 13.55 | 2(ry)

1 |53.20 | 78.53
2s) | 60.73 | 73.12
5 | 64.52 | 73.09

10% | 0.22 | 13.06 | 2(ey) | 1eryy | 59:36 | 13.30 | 2(ry)

1(ey) | 6045 | 73.16

Table 4.4: Computing Performance (laptop PC, GFLOPS)

LU DensexDense | TrixDense | TrixTri
n | MATLAB| MATLAB Dot2 Dot2
1000 14.80 22.27 7.90 5.30
2000 22.22 31.85 8.00 5.34
4000 27.19 33.92 8.07 5.37

o Tioa: Total computing time for Method A or B

e k;, ko: The numbers of iterations at Steps 2 and 4 of the proposed algorithm,

respectively

e Subscript S, F1: A type of stopping criterion for iteration in Section 3.2

e Ryy: Ratio of total computing time to computing time for LU

e Typ: Total computing time to solve Az

26

b with Multiprecision Computing

Toolbox with d = 34 (compliant with IEEE 754 binary128)

Table 4.3 indicates that if k(A4) < 10'°, total computing time for Method A or
B is comparable to that for an LU factorization, because the algorithm successfully
stops without preconditioning. On the other hand, if k(A) > 10'®, the preconditioning
techniques are applied, and total computing time for Method A or B is about 60 times
as much as that for an LU factorization. Although the theoretical values of Rpy of
Methods A and B are 22 and 16, respectively, the numerical results show that the values
of Ry are fairly greater than the theoretical values. Moreover, although the theoretical
computational cost of Method B is less than that of Method A, measured computing
time for Method B is almost the same as that for Method A. These differences are due
to computing performance.

Table 4.4 shows the computing performance using the laptop PC in GFLOPS. The

meanings of the items in the table are shown below.

e LU: LU factorization by MATLAB
e DensexDense: Dense-dense matrix multiplication by MATLAB
e TrixDense: Triangular-dense matrix multiplication by Dot2

e TrixTri: Triangular-triangular matrix multiplication by Dot2

In this table, it can be seen that the performance of triangular matrix multipli-
“cations (TrixDense and TrixTri) using Dot2 is considerably worse than those of LU.
In the proposed algorithm, Method A has a triangular-dense matrix multiplication for
calculating Xz A. Moreover, Method B has a triangular-triangular matrix multiplica-
tion using Dot2 for calculating PAT — LU. This is the reason why Ry of Methods
A and B becomes greater than the theoretical values. On the other hand, computing

27

Table 4.5: Computing Environment (workstation)

CPU Intel Xeon E5-4617 2.9 GHz 24 Cores
Memory 1TB
Software MATLAB R2015b
Compiler Intel C++ Compiler version 13.1.1 |
IEEE 754 binary64 (u = 2753 ~ 1071°)
Theoretical peak performance 556.8 GFLOPS

time for the proposed algorithm is much less than that for MP with d = 34 in all the
cases. Moreover, Ca and Cg are small enough to confirm that Ca and Cp are good
approximation.

In addition, we perform numerical experiments for larger problems using the work-
station in the same way. This computing environment is shown in Table 4.5. Theoretical
peak performance of the workstation is 556.8 GFLOPS. We display the maximum rel-
ative error for n = 5000 and n = 10000 in Tables 4.7 and 4.6, respectively. Computing
times for n = 5000 and n = 10000 is shown in Tables 4.8 and 4.9. Moreover, computing
performance using the workstation is presented in Table 4.10. These results are similar
to those using the laptop PC. As these results, we can see that our proposed algorithm

also works well for large size matrices.

28

Table 4.6: Maximum Relative Error (workstation), n = 5000

cnd

A\b

Method A

Method B

MP-34

108
101
1018
1024
1030
1032

8.6 -
29-
29-
26-
2.7-
34-

2.2.10716
2.9.1014
4.3-10716
2.2-10716
4.6-1071

2.2-10716
2.9-1071
4.4-10716
2.2.10716
8.8-1071

2.9.10%00

8.4-107%

2.2.10716
2.2-10716
2.2-10716
2.3-1071
1.1-107%
1.4-107%

Table 4.7:

Maximum Relative Error (workstation), n = 10000

cnd

A\b

Method A

Method B

MPg-34

108
101
1016
1024
10%°
1032

1098
109
10+03
10101
10+01
10+01

8.6-
2.9
3.3-
2.6-
2.7
3.4-

2.2.10716
1.8-10712
8.5-10716
2.2-10716
1.4-10714

2.2-10716
1.8-10712
7.4-10716
2.2-1071
2.6-107

1.8-10%03

1.9-107%

2.2-10716
2.2-1071°
3.8.107%
3.1-107%
7.3.107%
5.3-107%

29

Table 4.8: Computing time(sec) and Ratio (workstation), n = 5000

Method A Method B MP g3
end | LU | Teotar | k1 | k2 |Riv | Teota | k1 | k2 |Riv| Twme
108 (10| 10 | 25 | - | 20| 1.0 | 2 | - | 1.0 | 1609
104[10] 1.2 |55 | - [12| L2 |5g | — | 12| 1745
101 | 1.0 | 226 |1y | Lsy | 226] 243 | 1y | Ls) | 243 | 159.0
1024 | 1.0 | 229 | 2y | 25y | 229 | 252 | 2(ey) | 2¢5) | 252 | 1544
1030 | 1.0 | 23.7 | 1y | 5 | 23.7 | 241 |1y | s | 241 1541
10%2 [1.0 | 23.4 | 1y | 20y | 234 | 25.1 | 1ey) | 2py) | 251 | 1545

Table 4.9: Computing Time (sec) and Ratio (workstation), n = 10000

Method A

Method B

MPg-34

cnd

LU

Ttotal

k,

ka

Ry

Ttota.l

Ky

ks

Rru

Twmp

108
1 014
1 015
1 024
1 030
1032

5.3
5.4
5.4
5.4
5.5
5.4

5.6
5.9

%)
5(s)

‘1.1
1.1

5.6
5.9

2(s)
9(s)

1.1
1.1

193.7
196.1
197.6

L(p1)
L(r1)
2(r1)

Lis)
2(s)
4(s)

35.9
36.3
359

203.9
198.5
208.5

Liryy
L(F1)
2(r1)

L(s)
%)
4(s)

37.8
36.8
37.9

193.4

2(r1)

L(p1)

35.8

206.1

2(r1)

3(F1)

38.2

1072.4
1071.3
1070.3
1055.9
1055.9
1055.9

30

Table 4.10: Computing Performance (workstation, GFLOPS)

LU DensexDense | TrixDense | TrixTri
n | MATLAB | MATLAB Dot2 Dot2
5000 99.4 443.9 89.4 58.8
10000 133.4 477.8 89.1 59.0
20000 152.5 502.0 87.5 57.5

31

Chapter 5

Acceleration of the Method A

If we use Dot2, we can calculate a dot product as if computed in quadruple precision
arithmetic. This algorithm works well for the preconditioning method in terms of the
accuracy of the results. However, it is not so easy to implement the algorithm in every
computer environment with the optimization level as good as optimized BLAS routines,
such as Intel MKL [12] and OpenBLAS [13]. With the BLAS-based method [14, 15] of
accurate matrix multiplication, we can calculate matrix products much faster than Dot2
with a naive implementation. Therefore, we apply the BLAS-based method to calculate
C in (3.6). It is expected to save the computing time of the Method A significantly.

5.1 BLAS-based Method

‘We briefly review the basic idea of the algorithms [14, 15] for accurate matrix multipli-
cation based on Level 3 BLAS. For two floating-point matrices A and B with consistent

inner dimension, let us divide A and B into three floating-point matrices each such that

A= A(l) + A(z) + A(3)’ B = B(l) + B(2) + B(3)'

32

These transformations are error-free. Each element of A® and B®, k = 1,2 has
nonzero significand bits fewer than the number of significand bits in working precision
(53 for binary64) such that A®B®, AMB® and A®B® can be computed in working
precision arithmetic without roundoff error. Then, the matrix product AB is expressed
as

AB = (AM + A®@ A®YBW 4 B® 4+ B®),

and
AB = AOBW 4 (AVB® + AP BWY 4 (A(I)B(3) + A@B®@ 4 AG)B)).

Therefore, we can simulate a higher-precision matrix multiplication by calculating six
matrix multiplications in working precision arithmetic with Level 3 BLAS routines,
such as DGEMM and DTRMM. A obvious drawback of this method is to require more work-
ing space for storing intermediate results. Although this method does not necessarily
achieve quadruple precision arithmetic, heuristics suggest that it is usually sufficient in
practice.

Table 5.1 shows the computational cost of the preconditioning method together
with the ratio to the computational cost of an LU factorization. In Table 5.1, the cost
of calculating C' with Dot2 is 2n® flops (floating-point operations), while the cost of
calculating C with the BLAS-based method is 6n3 flops. Because of this difference, the
total cost of the preconditioning method with the BLAS-based method is less than that
with Dot2.

?5.2 Numerical Results

In the Method A, we apply each of Dot2 and the BLAS-based method for accurate ma-
trix multiplication and compare numerical results on the workstation. The experiment

method is the same as section 4.

33

Table 5.1: Computational cost (flops) of Method A and ratio to LU

Operations requiring O(n?) flops | With Dot2 | BLAS-based
LU factorization of A7 2n3 2n8
X, =UT 3nd 3n
C:.=X,A Byl 6n®
LU factorization of C 2p3 23
Total cost Bnd Bpd
Ratio to LU 21.25 11.5

First, we show the maximum relative errors (4.1) of approximate solutions obtained
by both of the preconditioning methods with Dot2 and the BLAS-based method. We
also show the results of the standard method to solve Az = b with an LU factorization
in multiple precision arithmetic. To estimate the maximum relative errors, we solve
the linear systems in sufficiently long precision arithmetic and regard the results as the
exact solutions. Numerical results are ‘shown in Tables 5.5, 5.6 and 5.7 for n = 5000,
n = 10000 and n = 20000, respectively. As can be seen, both of the preconditioning
methods with Dot2 and the BLAS-based method work well for cnd < 10%. In the case

- *of cnd = 10%2, the preconditioning method fails because the generated matrix is too

ill-conditioned and it is not sufficient for the preconditioning to reduce the condition

number.

Next, we compare computing times of the above methods. The results are shown

in Tables 5.5, 5.6 and 5.7 for n = 5000, n = 10000 and n = 20000, respectively. The

34

Table 5.2: Maximum Relative Error, n = 5000

cnd | A\b (MATLAB) | With Dot2 | BLAS-based | MP (d = 34)
1018 3.7-10%00 2.2-10718 | 22.107 2.2-10716
10% 2.6 - 1010 2.2.107% | 22.107% | 23.107%
10% 2.7- 1070 46-1074 | 46-107% | 1.1.107%
1032 3.4-10t% failed failed 1.4-107%
Table 5.3: Maximum relative error, n = 10000
end | A\b (MATLAB) | With Dot2 | BLAS-based | MP (d = 34)
10!8 5.6-1070 2.2-1076 | 2.2.1071° 2.2-10716
10% 2.6 - 1070 2.2.1071% | 2.2.10716 3.1-107H
10% 2.7-10%% 14-107% | 1.4-107% | 7.3-1077
1032 3.4-10%% failed failed 5.3-107%

meanings of the items in the tables are as follows.

cnd: Specified condition number of A (k(A) ~ cnd)

Try: Computing time for an LU factorization of AT in binary64 arithmetic

Tiotal: 'Total computing time for the Method A

k;: The number of iterations for iterative refinement in Part 1 of Algorithm 3

ky: The number of iterations for iterative refinement in Part 2 of Algorithm 3

Rpu: Ratio of Tiotal to TrLu

35

Table 5.4: Maximum relative error, n = 20000

cnd | A\b (MATLAB) | With Dot2 | BLAS-based | MP (d = 34)
108 2.0 - 10+ 2.2.107% | 22.1071% | 2.2.107¢
10% 5.3 1070 2.2-1071% | 2.2.10716 7.3-10712
10%° 1.2 1002 2.0-10718 | 2.0-1078 | 7.5.107%
10%2 1.9-10%% failed failed 1.4-107%

Table 5.5: Computing time (sec.) and ratio, n = 5000

With Dot2 BLAS-based MP (d = 34)
end | Tru | Teotar | k1 | k2 | Rov | Teotar | k1 | k2 | Rou Twmp
10%(10{2.0|1|1|200| 68 [1]|1]638 128.3
1024| 1.0 | 229 {2 |2 |229| 68 | 2| 2|68 129.6
10| 1.0 | 237 | 1|5 |237| 69 [1]| 5|69 129.0

e Typ: Total computing time to solve Az = b with the multiple-precision toolbox

with d = 34 (compliant with IEEE 754 binary128)

As can be seen from the tables, the preconditioning method with the BLAS-based
method is much faster than that with Dot2 in all cases. It is remarkable that the pre-
‘conditioning method with the BLAS-based method requires less than 10 times as much
as computing time of an LU factorization in working precision arithmetic.Therefore, it

turns out that the Method A with the BLAS-based method is very effective.

36

Table 5.6: Computing time (sec.) and ratio, n = 10000

With Dot2 BLAS-based MP (d = 34)
cnd | Try | Teotar | k1 | k2 | Rou | Tootar | k1 | k2 | Riu Twmp
10 | 54 [1483 | 1|2 275|425 | 1| 1|79 923.0
10| 54 | 1481 | 1 |2 |2714| 427 {1279 927.5
100 | 5.4 (1489 | 2 | 4 (276|436 | 2 | 4 | 81 924.9

Table 5.7: Computing time (sec.) and ratio, n = 20000

With Dot2 BLAS-based MP (d = 34)
cnd | Tou | Tiotat | k1 | k2 | Rou | Tiotat | k1 | k2 | Rru Tump
108 | 36.7(1192.2 | 1 | 2 3252918 1 | 1} 80 7078.4
10136711927 1| 2 |325(2014| 1|2 |79 7060.8
10%° | 36.7 (11968 | 2 | 3 |326(291.7| 2 | 3 | 79 7092.1

37

Chapter 6

Conclusion

We presented an accurate and efficient algorithm for solving ill-conditioned linear sys-
tems. If we use this algorithm, the condition number can be reduced by preconditioning
using a result of an LU factorization. We can obtain approximate solutions of linear
systems with the condition number up to 10%° by the proposed algorithm. Moreover, the
proposed algorithm is much faster than the standard method using multiple precision
arithmetic even if it is specialized for IEEE 754 binary128 arithmetic.

If we use the BLAS-based method instead of Dot2 to achieve accurate matrix mul-
tiplication, we can save much computing time due to high efficiency of BLAS routines,
although the BLAS-based method requires more working space than the method with
Dot2. Numerical results demonstrate that applying the BLAS-based method to the
preconditioning method is greatly effective regarding the acceleration of the Method A.

_If we apply the FMA instruction to Dot2, we can reduce computational cost. We wish

to use FMA in our future works.

38

Acknowledgements

First of all, I deeply appreciate the help received from Professor Takeshi Ogita at Tokyo
Woman’s Christian University, my supervisor, with valuable discussion, comments on
this paper, and reading the manuscript. I would like to express my gratitude to Profes-
sor Katsuhisa Ozaki at Shibaura Institute of Technology for generous support, helpful
advice and comments about the BLAS-based method. I also thank Professor Yuka
Kato at Tokyo Woman’s Christian University and Professor Toshinori Oaku at Tokyo

Woman's Christian University for generous support during my doctoral course.

39

Bibliography

[1] R. C. Aster, B. Borchersa, C. H. Thurber, Parameter Estimation and Inverse
Problems Second Edition, Academic Press, New York, 2012.

[2] S. M. Rump, Inversion of extremely ill-conditioned matrices in floating-point,

Japan J. Indust. Appl. Math., 26 (2009), 249-277.

[3] S. M. Rump, Accurate solution of dense linear systems, part I: Algorithms in

rounding to nearest, J. Comp. Appl. Math., 242 (2013), 157-184.

[4] T. Ogita, Accurate matrix factorization: inverse LU and inverse QR factorizations,

SIAM J. Matrix Anal. Appl., 31 (2010), 2477-2497.

[5] G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd edition, The Johns
Hopkins University Press, Baltimore and London, 1996.

[6] N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edition, SIAM,
Philadelphia PA, 2002.

[7] T. Ogita, S. M. Rump, S. Oishi, Accurate sum and dot product, SIAM J. Sci.
Comput., 26 (2005), 1955-1988.

[8] Advanpix, Multiprecision Computing Toolbox for MATLAB,
http://www.advanpix.com/

40

[9) The GNU Multiple Precision Arithmetic Library, https: //gmplib.org

[10] The GNU MPFR Library, http://www.mpfr.org

[11] S. M. Rump, A class of arbitrarily ill-conditioned floating-point matrices, SIAM J.
Matrix Anal. Appl., 12 (1991), 645-653.

[12] Intel Math Kernel Library, https://software.intel. com/en-us/intel-mkl
[13] OpenBLAS, an optimized BLAS library, http://www.openblas .net/

[14] K. Ozaki, T. Ogita, S. Oishi, S. M. Rump, Error-free transformations of matrix
multiplication by using fast routines of matrix multiplication and its applications,

Numerical Algorithms, 59 (2012), 95-118.

[15] K. Ozaki, T. Ogita, S. Oishi, S. M. Rump, Error-free transformation of matrix mul-
tiplication with a posteriori validation, Numer. Linear Algebra Appl., 23 (2016),
931-946.

Publication Related to this Dissertation

1. Y. Kobayashi, T.Ogita, Accurate and efficient algorithm for solving ill-conditioned
linear systems by preconditionin.g methods, Nonlinear Theory and Its Applica-
tions, IEICE, 7 (2016), 374-385.

(The content of Chapters 1, 3, 4, and 6)

2. Y. Kobayashi, T.Ogita, K.Ozaki, Acceleration of a preconditioning method for
ill-conditioned dense linear systems by use of a BLAS-based method, Reliable
Computing, 25 (2017), 15-23.

(The content of Chapter 5 and 6)

41

