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Abstract

This science report is based on a cooperative study with T. Mishima
(Nihon University) and N. Yoshino (Tokyo Institute of Technology). The
relativistic dynamics of a domain wall in a radiation fluid is studied. As
one of applications, we demonstrate an interesting model in which a false
vacuum bubble, in the case of a certain kind of surface stress-energy
tensor, expands monotonically and at the same time can create a child
universe.

1. Introduction

It is now generally accepted that the universe rapidly inflated after
the big bang, as was proposed by K. Sato and A. Guth. By the gigantic
spacetexpansion the initially hot region of the universe rapidly cools
down to the temperature of the cosmological first order phase transition.
Such regions would become the false-vacuum bubbles surrounding the
true-vacuum bubbles (Fig. 1). We are supposed to be living now in one
of the inflated regions of the universe, because the regions that did not
inflate would have remained microscopic in size and would not accom-
modate life. In the inflationary universe model, the researches for the
false-vacuum bubbles are considered to be very important and in-
triguing.

In 1981, K. Sato et al.V pointed out the possibility of the multi-
pleproduction of universes by studying the motion of the false-vacuum
bubble. After their works, several authors discussed whether the crea-
tion of a child universe occurs by producing a false vacuum bubble iz the
laboratory, that is, whether a false vacuum bubble prepared on a regular
initial spacelike hypersurface can inflate permanently or not.?* Here
the regular initial spacelike hypersurface means the Cauchy surface on
which the observer in the laboratory can manipulate the Cauchy data
with no obstructions from some past singularities. In the classical
theory, the above possibility is forbidden by a certain kind of no-go
theorem® at least in spherical symmetric cases if the energy-momentum
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. 277N tensor obeys the weak energy condi-
d ~ .
’ Y% v tion. Hence, other routes to escape
PO Ll T 4 , " '
° *\.. i ! from the no-go theorem are pro-
[

posed in this paper. For example,
the authors of®* pointed out the
realization of the possibility by the
use of quantum mechanical tunnel-
ing of the bubble itself.

2. Junction conditions

In this section, the junction con-

ditions are derived from the Ein-

Fig. 1 stein equation. The junction condi-

tions are the equation describing

the dynamics of the domain wall between the true- and false-vacuum

regions. The true-vacuum region is a region in which the energy density

is zero and is stable both classically and quantum mechanically. On the

other hand, the false-vacuum region is a region in which the energy

density is non-zero and stable classically but unstable quantum mechan-
ically. '

The four-dimensional Einstein equation is
Ru— 5 8uR=87GT,, 2.1)

where R,, is the Ricci tensor, R is the Ricci scalar, G is the Newton’s

gravitational constant, and 7T,, is the matter energy-momentum tensor.

Let us use a Gaussian normal coordinate system in the neighborhood

N =0 (wall)

Fig. 2
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of the wall for the simplicity. Let the (2+1)-dimensional spacetime
hypersurface ¥ be an evolutionary position of the domain wall (Fig. 2).
The coordinate 7 is perpendicular to the hypersurface ¥ as the distance
in the poisitive direction from X. The equation =0 indicates the
hypersurface £. The coordinates x(i=1, 2, 3) are the coordinates on Z.
The vector £, is a unit vector normal to X.

The extrinsic curvature K;; corresponding to each n=const. hyper-
surface is a three-dimensional tensor expressed by

Ky=&=—T)=— 5 0rg (2.2

where V/; is the four-dimensional covariant derivative, and g;; is the
metric of the hypersurface. The Einstein equation becomes

(3)
Gi=— 4 R+ [(TrK)*—Tr(K?)]=8xGT}, (2.32)
G7=D,K7— D{TrK)=81GT?, (2.3b)
Gi=OGi—3,(K!— 8/TrK) —(TrKK;
+ + SLTrK*+(TrK)?)=82GT}, (2.3c)

where 0 is the partial derivative and D the three-dimensional covariant
derivative with respect to the metric g;; defined on X.

The energy-momentum tensor 7* is expected o have a d-function

singularity at the domain wall and is given by

T#(x)=S"(x")0(n) +O(—n) T*(x) +B(n) T (x) , (2.4)

where S* is the surface stress-energy tensor and — is inside region of the
domain wall and + is outside region of the domain wall. Throughout
this article we will use the thin wall approximation assuming that the
thickness of the domain wall is negligible because the scalar field O,
which describes the domain wall configuration, changes sharply at the
domain wall.

Inserting the energy-momentum tensor of Eq. (2.4) into the field
equation (2.3), one sees that (2.3a) and (2.3b) are satisfied automatically if
the continuous solution g; is given in the neibourhood of n=0. The
equation (2.3c) is the only non-trivial condition and lim{édnx (2.3c) leads
to the junction condition

lim(Kin=+¢)—Kiin=—e)]= —82G(Si— % 5TrS).

3. Surface stress energy of a domain wall

The energy-momentum conservation law restricts the surface stress-
energy defined by Eq. (2.4) to a certain extent. The equations for
renergy-momemtum conservation in the Gaussian normal coordinates
read
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wTiv=D;T+0,Tn+2KT'n+(TrK)Tin=0, (3.1a)
Vo T?=D;T"+08,T“—K;T?+(TrK)T™=0( . (3.1b)
Inserting Eq. (2.4) into Eq. (3.1a), one finds
VT =S75(n)
+[D;SY— T+ T+ 2KiS"+ KS™16(n)
+[D;T% +0,T" + 2KiT" + KT"18(—n)
+[D;,T% 46, T7+ 2K T +KT%10(—n)
=0, (3.2)
where the prime denotes differentiation with respect ton. The consisten-
cy of Eq. (3.2) at =0 demands

Sin=0, (3.3)

D;Sit=Tn—Ti (3.4)
Inserting Eq. (2.4) into Eg. (3.1b), one can get

Sm=0, (3.5)

K,SI=T7—T". (3.6)

Combining the orthogonality conditions (3.3) and (3.5) with rota-
tional invariance, one concludes that S* can be written as

S*=o(r)U*U" — {(7)(h*™ + U*TP) (3.7)
where
he =gt —ErEY (3.8)
is the metric projected into the hypersurface of the wall, and
Un=(1,0,0,0), (3.9

is the four-velocity of the domain wall. Here o is the surface density of
the domain wall, and { is the surface tension. Rotational invariance also
implies that the metric on the domain wall can be written as

ds?=—d®+r(t)%dQ?, (3.10)
where dQ?=d0%+sin?0do? and 7 is the proper time of the wall. Calculat-
ing Eq. (3.7), we have

ST=o(1), (3.11a)
Sw:—%ﬁ—, (3.11b)
oo _ (1)
S r2sin%0 ’ (3.11c¢)
others=0. (3.114d)
By Eq. (3.11), we can get
D;S7=6(z)+2 - (o(r)—{() (3.12a)
DS%=0, (3.12b)
D;S”=0, (3.12¢)

where the overdot denotes a derivative with respect to 7. From Eq. (3.4)
and Eq. (3.12a), we can deduce
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6@+2 L (o0~ L@) =T~ T1. (3.13)

4. Equation of motion for a domain wall

In the inside region the energy-momentum tensor 7* is dominated
by nonzero vacuum energy, —(3x?/87G)g,. The inside of the wall is
described as the region of the de Sitter space,

ds?=—(1—x%r3dt?+(1 —x%r?) dr2+r2dQ?. (4.1)

Outside the domain wall, due to the existence of the null energy flux
radiated by the wall, the energy-momentum tensor 7% can be written as

oym

TH=% = T( Y o, (4.2)

where F sings denote in-going or out-going respectively. Then the
outside geometry is given by Vaidya’s radiating metric”

ds?=—(1— 20 )g2— pqudr+ridee, (4.3)

where [* is radial null vector and v is called retarted time coordinate (in
fact, v coincides with the observer’s time at infinity). The function m(v)
is the Bondi mass, and is determined by the basic equations below.

Following Israel,? the most important equation of motion for the
domain wall is given as a junction condition deduced from the Einstein
equation (2.1). By evaluating Eq. (2.5), the junction condition reads

Kit—K'”=—4nGao, (4.4)
where the superscripts + and — denote the outside and the inside re-
spectively.

We will evaluate the 66 component of Eq. (4.4). We begin by
calculating the normal vector as seen by a Vaidya observer. Because the
domain wall is spherically symmetric, the four-velocity of any point on
the domain wall assumes the form

U{}=<N,N dr

(4.5a)

n=((—ax —)N N00), (4.5b)

in the Vaidya coordinates, where N=(1—2Gm/r—2dr/dv)" 2. Because
the unit normal §, is orthogonal to U*, we have §, and &,

£.=(— N T N,00), (4.62)

E"—(+NN(1— 2 £ 91900), (4.6b)

where the upper and lower signs denote in-going and out-going respec-
tively. By applying Eq. (2.2) to our Vaidya system, we have
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Ka(Vaidya)= % 0,800

=%(“6ﬂr2
=N<1— 2Gm _ﬂ
r dv.
=78v, 4.7)

where By= X (r2+1—2Gm/7)"/2. For the last equality we have used
Ay (e (s 2Gm 1z
v ——r<+r+<r +1—- >

and

I (1 — 20m) (- 20m _p Ay

wheretsigns of first term denote in-going and out-going. By the same
method,? we get
Ka(de Sitter)=78p, (4.8)
where Bp= 12+ 1—yx%2)2
From Eq. (4.7) and (4.8), the 66 component of Eq. (4.4) is written as

By—Bp=—4nGo(t)r(1) . (4.9)
The junction condition (4.9) in the case of the wall with radiation gives
the same equation as the junction condition in the case of the wall
without radiation except for the valiable m(v). The tt component K is
given by

“

Ko bem U0 =~ U U=~ (4.10)
where DU*/D.=dU"/d.+T%,U*U° is the covariant acceleration of the wall.
K. is the component of the covariant acceleration in the normal direc-
tion. By applying Eq. (4.10) to the Vaidya system, we obtain

d?r

2Gm
PR 0 0’<1_ r
Kz (Vaidya)=—N dzdv + 5
dr 2Gm o,a
3 _ _ v 3
xN{(24L (1 . ))+ LN, (A1)

where N=(1—-2Gm/r—2dr/dv)~'/2, By the same method?, we get

. o (r=x*)
Ki(de Sitter)= A= +7912 ° (4.12)
From Egs. (4.11) and (4.12), the tt component of Eq. (4.4) is written as
d*r o,a 2Gm
N dwdv Nﬁ<2 >>
_ 0a B r—x%r
2 N (1 —x%r+72)L/2
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=47G(0—20), (4.13)
where N=(1—2Gm/r—2dr/dv) /2.

We can easily see that Eq. (4.13) is simply the proper-time derivative
of Eq. (4.9). Indeed, this case is the same as the case of the wall without
radiation.

By assuming that the energy-momentum tensor 7, of the de Sitter
space is very small, we can write as

T,=0. (4.14)
The null vector * in Vaidya's radiating schwarzschild metric is
given as
1 _
t= <1‘ 5Gm) —2ﬂ 7z (1,%1,0,0), (4.15)
r dv
where the upper sign — and the lower sign + denote in-going and
out-going, respectively, and each component denotes 7, 7, 6, @ component.
From Egs. (4.2), (4.14) and (4.15), the right hand of Eq. (3.12) can be gotten

+ 0.m(v) _

Arr? (4.16)
From Egs. (3.12), (4.14) and (4.16), we can get
d(4nr’o) _d(4mr’) _ dm
dr C~dr (Fr+B8v) @.17)

where the upper sign — and the lower sign + denote in-going and out-
going respectively and the above equation represents the energy-
momentum conservation law. The right hand side corresponds to the
energy flow which the domain wall have for the in-going or out-going
radiation.

The motion for a domain wall is determined by the two independent
equations (4.9) and (4.17) and another additional condition, which we will
explain in the next chapter. Let us recall that the equation (4.9) is given
by the junction condition and Eq. (4.17) comes from the energy conserva-
tion law.

5. Solution of the equations of motion

After a simple calculation from Egs. (4.4), (4.7) and (4.8), we can see
that the junction condition is written by
r+Vir, m, 0)=—1,
B 26m +((4nGo)*—x*)r3 12
V=—x'- [ 8nGor? } ' (6.1)
This equation has the same form as the Schwarzschild vacuum case
derived by Blau et al.?, although m and ¢ depend on the proper time 7 in
our present case.
For the previously mentioned additional condition, the surface-
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Fig. 4
energy tensor approximates to Sj=06! where 6=0.2 That is, g=¢=

constant (called as normal vacuum case in this talk). From this result, the
Eq. (4.17) reads m=const. and the problem is reduced to the one-
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Fig. 5

Fig. 6
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dimensional potential problem based on the Eq. (5.10). The trajectories
of the wall are described as horizontal dashed lines in (r —m) diagram
(Fig. 3) and are classified into several types.? The diagrams show the
behavior in each of the de Sitter and the Vaidya space-time. When the
value of ¢ is bigger, the shape of the potential becomes narrow to right
side (Fig. 5). In the following, for the additional condition, we generalize
the above case to 0 # { case. In contrast with the normal vacuum case,
the Eq. (5.1) becomes the non-trivial form,
—1
an _am(2L) (5.2)

where the Planck units are introduced (I;m —m, I;'r — r, 4nl3o > 0, - - *),
and A=0—¢# 0. We will restrict in the case of out-going negative flux,
although this 0, equation is consistent with both in-going flux and
out-going flux. From the examination of this equation, one can find that
the wall trajectories are modified like the real lines shown in Fig. 6 if A
> 0. Then in the case of a large enough A, as easily expected, the wall
can move from the region of the laboratory side (I) to the other side II)
with its proper radius expanding monotonously, avoiding the potential
barrier (the shaded region in Fig. 7). One can also confirm the existence
of such solutions by numerical evaluation, and find the possibility of the
creation of a child universe. For further understanding of the global
structure of the spacetime, the conformal diagram of the outside space-
time is shown in Fig. 8 whose apparent horizons are described as the line
(a) and the line (b). First of all, it should be noted that the former
apparent horizon (a) is always null and coincides with the future event
horizon itself, while the latter one (b) becomes time-like during the

Negative
Null Energy Flux

Fig. 8
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existence of out-going negative energy null flux and does not coincide
with the past event horizon. From this diagram one can easily under-
stand how the wall moves in the other side from the laboratory side.
From Eq. (5.1), the relation of » and m is plotted (Fig. 3). The forbidden
region is indicated by the oblique-line region. Both the allowed region
and the outside region of Black Hole are indicated by shading.

6. Conclusion

We have presented another possible scenario of the creation of a
child universe. Our strategy adopted here is to break the weak energy
condition by introducing the domain wall which radiates negative
energy flux. The formalism applied to the wall whose surface stress-
energy tensor is different from the normal vacuum one. The difference
is characterized by A=0 — {. We showed that the gate for the new world
is opened if A is large enough. As compared with the way by quantum
tunneling, the treatment discussed here presents the real route to the new
world in the real spacetime. However, the surface stress-energy tensor of
the wall must be well-devised (perhaps quantum mechanically). As the
conclusions from this study is still not conclusive, and futher study
should be conducted.
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