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1. Introduction

In the evolution equation theory in Hilbert spaces, the following Minty’s
theorem [3] for monotone operators is most important :

(1) A monotone operator A in a Hilbert space H is mazimal if and only
of R(I+ AA)Y= H for some X > 0.

(IT) If a singlevalued monotone operator A in a Hilbert space H is
defined on H and continuous, then A is mazimal.

This theorem is effectively used to generate nonlinear semigroups or to
show the existence of solutions to nonlinear elliptic equations of some type.
This theorem has been generalized to Banach spaces (for instance Barbu
[1]). However, Minty’s theorem does not seem to have been generalized to
a wider class than that of monotone operators till Shimizu [4].

In 1992 Shimizu introduced a class of operators in a Hilbert space de-
noted by M(a), a generalization of monotone operators, and showed that
Minty’s theorem holds in this class.

In this paper we intend to introduce a class of operators in a Hilbert
space denoted by M({ay}), a generalization of M(«), and prove that
Minty’s theorem still holds in this class. Furthermore we discuss perturba-
tion theorems on operators in the class M({ax}).

2. Class M({a)})

Let H be a real or complex Hilbert space with norm || - || and inner-
product {-,-).

We consider possibly multivalued nonlinear operators in H. For a such
operator A, we denote its domain by D(A), its range by R(A) and its inverse
operator by A~!. The domain D(A + B) of the sum A + B is understood
as D(A) N D(B).

The monofone operators are defined as follows :
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Definition 1 An operator A in H is said to be monotone, if A
satisfies the following condition :

Re(x — xb, 21 — 22) 20

for any 1,22 € D(A) Ty € Az, xh € Axs.

The class M(a), given by Shimizu [4], is defined as follows :

Definition 2 (Shimizu) Let o« € [0,1). An operaor A in H is said to
be of class M(a), if A satisfies the following condition :

Re(r} — 5, 11 — 22) 2 — a |7} — 25| |21 — @2
for any z1,x9 € D(A), | € Az, xh € Ax,.
Evidently, we have M(a) C M(3) for 0L a < 3 < 1, and A is mono-
tone if and only if A € M(0).

We shall give a geometrical interpretation of an operator of class M(a).
In the case of real Hilbert space H, A € M(«) means as follows (Figure 1).
When any z1,x2 € D(A) are fixed, for any 2| € Axy, zh € Axg, the vector
x| — x5 makes an angle with the vector £y — z2 whose cosine is greater than
—«. In other words, the point x; — z2 + 2| — x5 does not belong to the
shadow part in Figure 1.

Figure 1

Ty — Ty + ) — Th

2! !
vector 7 — x,

On the operators of class M(«a), Shimizu [4] proved the following propo-
sition :

cosf = —q
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An operator A is of class M(«) if and only if
o1 = 22/l < (1 - a®) "2 |21 — 29 + A2 — 2b))
for any x1,29 € D(A), &) € Axy, 2, € Axs and any A > 0.

Suggested by the fact mentioned above, we introduce the following class
of operators as a generalization of class M(a) :

Definition 3 Let {ax}iso be a family of real numbers a}\ 21 for all
A > 0. An operator A in H is said to be of class M({ay}), if A satisfies

the following condition :
21 = woll £ axllzr — 22 + A}y — 2h)

for any x1,22 € D(A), 2} € Azy, 2} € Azy and any X > 0.

A geometrical meaning of an operator belonging to the class M({ay})
is given by the next lemma :

Lemma 1 An operator A is of class M({anr}) if and only if A satisfies
the following condition :

For any x1,x9 € D(A) and any X > 0, Ux(x1,22) denotes an open ball
with the center (1 - l) (x1—x9) and the radius M, and U(xq, x2) =
A )\a,\

U Ux(x1,x2). Then,
A>0

1 — x4 2] — 2y ¢ U(xy, 29)
Jor any x| € Axy, r) € Axs.
Proof. 1f A € M({ay}), then for any z1, 22 € D(A), x| € Axy, o} €
Axg and A > 0
“(:Ll —xy+ ) —2h) — (1 — l)(.vl - wg)H
A A

1 llz1 — ol
= X“l’l —xa + A(x] —a5)f| 2 Ty
which implies
1 —x2+ 2y -y ¢ Un(z1, 22).
Hence
r1 — I+ x'l - .1"2 ¢ U(acl,:cz).
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Similarly, the inverse implication holds. O

In the case of real Hilbert space H, we illustrate Lemma 1 by Figure 2.
Let A € M({a)}) and z1,22 € D(A). When X runs over (0,00), the
center (1 — 3)(z1 — x2) of the open ball Ux(x1,z2) moves on the half line
(—oo(xy — 13), 1 — z2). The center tends to —oo(x; — 22) as A — 0, and
converges to x1 — 2 as A — oo.

We now consider A € M(qa) for any a € [0,1). It should be noted that
we can choose {a)}aso (ax 2 1) such that U(z1,22) in Figure 2 is contained
in the shadow part in Figure 1 for A, however near to 7, § = arccos(—a)
may be.

Figure 2

! !

- ! !
vector r; — X,

<z LK {"’\‘\" <
@en NSNS
X A=,
U ( X1, )

3. Main Theorems

Lemma 2 For A € M({ay}), (I + M)™! is a singlevalued operator for
any A > 0.

Proof. Fix A > 0 arbitrarily. If 21,29 € D(A), x1 # x2, then
(I+ X))o NI+ AA)z2 = 0.

Indeed, if the conclusion is false, there exist ) € Az; and z, € Azg such
that 1 + Az} = 22 + A z5,. Hence

0 < flz1 — 2] £ anller — 22 + A} = 23)|| = 0,
which is absurd. Therefore, for any fixed x € D(A) we have

(I+XA)"'y=2 foranyy e (I+AA)z. O
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That an operator A is of class M({@,}), means that for any A >0
I+ A4) g1 = (1 +A4) " ol L aallyn — el
for any y1, y2 € D((I+XA)71).

Definition 4 Let 3 > 0. A singlevalued operator T in H is said to be
of class L(3), if T is a Lipschitz continuous operator with the Lipschilz
constant (3, that is,

Ty — Ty2l| S Bllyn —yoll  forany y1, y2 € D(T).

Consequently, an operator A is of class M({ay}), if and only if (7 +
AA)~1is of class L(ay) for any A > 0.

For two operators A and B in H, we denote A C B if B is an extension
of A, that is, D(A) C D(B) and Az C Bz for all x € D(A).

An operator A € M({ay}) is said to be mazimal in the class M({az}),
if B € M({ay}) and B D A imply B = A. Maximality in the class £(/3) is
defined similarly.

As is easily seen, we have the following two lemmas :

Lemma 3 For A, B € M({a)}), the following three conditions are equiv-
alent :

(1) AC B,

(2) (I+XA)Lc(I+AB)™! forany A >0,

(3) (I+MXA)"'Cc(I+AB)™' for some A > 0.

Lemma 4 For any A € M({a,}), the following three conditions are equiv-
alent :
(1) A is mazimal in M({anr}),
(2) (I 4 MA)~! is mazimal in L(ay) for any X > 0,
(3) (I+XA)~! is mazimal in L(ay) for some A > 0.
The following proposition is well known :

Proposition 1 Suppose T is a singlevalued operator in H satisfying

ITy1 — Tyal S Bllyr — 92l for any y1, ya € D(T).

Then there emists at least one singlevalued operator T defined on H such
that T DT and

\Ty1 — Tyall £ 8 lly1 — w2l for any y1, y2 € H.

In other words, any operator T € L(B3) has a mazimal extension T in L(/3)
with D(T) = H.
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This proposition can be proved by making use of Zorn’s lemma. For the
proof we refer to Komura and Konishi [2. p.15].

Now we state our main theorems. The first one is a generalization of
Minty's theorem (I) :

Theorem 1 For an operator A € M({ax}), the following three conditions
are equivalent :

(1) A s mazimal in the class M({ar}),

(2) RII+MA)=H for any A >0,

(3) R(I+AA)=H for some A > 0.

Proof. (1)=(2) Assume 4 is maximal in M({ay}). Then, by Lemma 4,
(I + A4)7! is maximal in L(a) for any A > 0. If (2) does not hold, then
for some g > 0. D((I + MA)~!) = R(I + \A) & H. By Proposition
1. (I + Xo4)~! has a maximal extension in L(a),) defined on H, which
contradicts the maximality of (I + \gA)~1.
(2)=(3) is trivial.
(3)=(1) Suppose R(I + X\gA) = H for some Ny > 0. Then (I 4+ N\gd)!is
maximal in L(ay,). Thus A is maximal in M({«y}) by Lemma 4. a

The second theorem is a generalization of Minty’s theorem (II) :
Theorem 2 Let {ayr}aso (a2 1 for all X > 0) satisfy the condition that
lif\n i(l)lf ay < 00. Let A be a singlevalued operator in the class M({ar}). If
D(A) = H and A 1s hemicontinuous (- that s, continuous along any hine

segment ). then A s mazimal in the class M({axr}).

Proof. Assume that A is not maximal in M({«)}). Then A has a
maximal extension A in M({ay}) with D(‘:l) = H, since D(4) = H. Hence
there exist £ € H and § € Az such that Ax # j. Put xy =« + \(J — Az)
for A > 0. Since ry — z as A — 0 and A is hemicontinuous, Axy — Az as
A — 0. Noting 4 C A. 4 € M({a,}), we have

lex — 2] L axllza — z + MAzy — Pl for any A > 0.
Substituting ry — ¢ = Ay — Ax), we get

|7 — Az]| £ a,]

Ay — Azl| for any A > 0.

Since /l\im Azy — Azl = 0 and li&n i(x)lfa,\ < 00, letting A — 0, we get
—0 —

|7 — Az|| £ 0. which is a contradiction. ( a
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4. Perturbation Theorems
Finally. we show the following perturbation theorems for operators in
the class M({ayr})

Theorem 3 Suppose A is a mazimal operator in the class M({ar}) and
B is an operator in the class L(3) with D(B) = H such that § < 1/(Apay,)
for some \g > 0. If A+ B € M({7:}) for some {7a}rs0 such that vy =1
for A > 0, then A+ B is mazimal in the class M({7.}).

Proof. The maximality of A+ B in the class M({vx}) is equivalent to
R(I + A4+ B)) = H for some A > 0, by Theorem 1. Hence it suffices to
show that the equation u + M(A + B)u 3 f has a solution u € D(A) for
any f € H. Since A is maximal, a singlevalued operator T' with D(T') =
can be defined by

Tg= I+ XA)"Yf—-NBg) forgeH.
T is a strict contraction operator. Indeed, for any ¢1,92 € H
ITg1 — Tgall

= (7 +204)71(f = 20Bg1) = (I + XA) " (f = 2o Bgo)|

< ax |l(f = AoBg1) = (f — AoBg2)|l

= axyMl|Bg1 — Bgall £ ax, Ao |91 — g2l
and ay, Ao < 1. Therefore T has a unique fixed point v € H, that is,

(I +XA) Y f — XBu) = u.

Hence u € D(A4) and f — NgBu € (I + \d)u, i.e. f€u+ N(A+ B)u. O
Theorem 4 Suppose A is an operator in the class M({a)}) and B is a

monotone operator such that D(A) N D(B) # 0. If A and B satisfy the
following condition :

Iz} — 3|l Ll — 2h + 2] — 25|
for any x1. r2 € D(A)N D(B), 7} € Azy. o) € Azq, 2| € By, 2y € Bxs,
then A+ B 1s of class M({ay}).
Proof For any i, Iy € D(A+ B) = D(A)N D(B), 2| € Azy, x4 €
Arq, 2 € Bz, 2y € Bz and X > 0, by the assumption
||1'1 — 22 + M) + ) — (&) + =D
= |lz; - .r2||2 + 2\ Re((a,l +2Y) = (24 + 1Y), =1 — x2)
+ A7) + 2f) = (2 + 25)|I?
2 |lry - -'L'~2||2 + 2ARe (3«"1 — Iy, T — T2} + )‘2||55’1 - 33{2”2
= ||lz1 — z2 + M| — )P 2 |21 — z2ll*/an?,
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hence. A+ B € M({ar}). a
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